Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Cell Culture and Virus Production
2.2. Fly Mortality Study
2.3. Virus Replication Assay
2.4. Quantitative Reverse Transcriptase PCR
2.5. Preparation of pcDNA3.1;NMUR1 Plasmid
2.6. Transfection of Plasmids into Cells
2.7. Western Blot
2.8. Infection of NMUR1-Expressing Cells
2.9. Quantification and Statistical Analyses
3. Results
3.1. Hyperinsulinemic D. melanogaster Models Are Less Susceptible to WNV Infection
3.2. JAK/STAT Expression Is Upregulated in Lst Mutant D. melanogaster
3.3. The Human Ortholog of Lst Promotes WNV Infection in Human Fibroblasts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orba, Y.; Hang’ombe, B.M.; Mweene, A.S.; Wada, Y.; Anindita, P.D.; Phongphaew, W.; Qiu, Y.; Kajihara, M.; Mori-Kajihara, A.; Eto, Y.; et al. First Isolation of West Nile Virus in Zambia from Mosquitoes. Transbound. Emerg. Dis. 2018, 65, 933–938. [Google Scholar] [CrossRef]
- Nash, D.; Mostashari, F.; Fine, A.; Miller, J.; O’leary, D.; Murray, K.; Huang, A.; Rosenberg, A.; Greenberg, A.; Sherman, M.; et al. The outbreak of West Nile virus infection in the New York City are in 1999. N. Engl. J. Med. 2001, 24, 344. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile Virus: Review of the Literature. JAMA 2013, 310, 308. [Google Scholar] [CrossRef]
- Muttis, E.; Balsalobre, A.; Chuchuy, A.; Mangudo, C.; Ciota, A.T.; Kramer, L.D.; Micieli, M.V. Factors Related to Aedes Aegypti (Diptera: Culicidae) Populations and Temperature Determine Differences on Life-History Traits with Regional Implications in Disease Transmission. J. Med. Entomol. 2018, 55, 1105–1112. [Google Scholar] [CrossRef]
- Hagan, R.W.; Didion, E.M.; Rosselot, A.E.; Holmes, C.J.; Siler, S.C.; Rosendale, A.J.; Hendershot, J.M.; Elliot, K.S.; Jennings, E.C.; Nine, G.A.; et al. Dehydration Prompts Increased Activity and Blood Feeding by Mosquitoes. Sci. Rep. 2018, 8, 6804. [Google Scholar] [CrossRef]
- Cucunawangsih, N.; Lugito, N.P.H. Trends of Dengue Disease Epidemiology. Virol. Res. Treat. 2017, 8, 1178122X1769583. [Google Scholar] [CrossRef] [PubMed]
- Deseda, C.C. Epidemiology of Zika. Curr. Opin. Pediatr. 2017, 29, 97–101. [Google Scholar] [CrossRef]
- Bigham, A.W.; Buckingham, K.J.; Husain, S.; Emond, M.J.; Bofferding, K.M.; Gildersleeve, H.; Rutherford, A.; Astakhova, N.M.; Perelygin, A.A.; Busch, M.P.; et al. Host Genetic Risk Factors for West Nile Virus Infection and Disease Progression. PLoS ONE 2011, 6, e24745. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.J.; Fleming, J.G.; Bryant, U.K.; Carter, C.N.; Huber, J.C., Jr.; Long, M.T.; Spencer, T.E.; Adelson, D.L. OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses. PLoS ONE 2010, 5, e10537. [Google Scholar] [CrossRef]
- Hadler, J.L.; Patel, D.; Bradley, K.; Hughes, J.M.; Blackmore, C.; Etkind, P.; Kan, L.; Getchell, J.; Blumenstock, J.; Engel, J. National Capacity for Surveillance, Prevention, and Control of West Nile Virus and Other Arbovirus Infections—United States, 2004 and 2012. MMWR. Morb. Mortal. Wkly. Rep. 2014, 63, 281–284. [Google Scholar]
- West Nile Virus | WHO. 2017. Available online: https://www.who.int/news-room/factsheets/detail/west-nile-virus (accessed on 12 August 2021).
- Chambers, T.J.; Diamond, M.S. Pathogenesis of Flavivirus Encephalitis. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2003; Volume 60, pp. 273–342. [Google Scholar] [CrossRef]
- Eldadah, A.H.; Nathanson, N.E.A.L. Pathogenesis of west nile virus encephalitis in mice and rats: II. virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. Am. J. Epidemiol. 1967, 86, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Arensburger, P.; Megy, K.; Waterhouse, R.M.; Abrudan, J.; Amedeo, P.; Antelo, B.; Bartholomay, L.; Bidwell, S.; Caler, E.; Camara, F.; et al. Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics. Science 2010, 330, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.C.; Tassetto, M.; Van Rij, R.P.; Goic, B.; Gausson, V.; Berry, B.; Jacquier, C.; Antoniewski, C.; Andino, R. Antiviral Immunity in Drosophila Requires Systemic RNA Interference Spread. Nature 2009, 458, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Ahlers, L.R.; Trammell, C.E.; Carrell, G.F.; Mackinnon, S.; Torrevillas, B.K.; Chow, C.Y.; Luckhart, S.; Goodman, A.G. Insulin potentiates JAK/STAT signaling to broadly inhibit flavivirus replication in insect vectors. Cell Rep. 2019, 7, 1946–1960. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Ebel, G.D.; Deubel, V.; Kerst, A.J.; Murri, S.; Meyer, R.; Bowen, M.; McKinney, N.; Morrill, W.E.; Crabtree, M.B.; et al. Complete Genome Sequences and Phylogenetic Analysis of West Nile Virus Strains Isolated from the United States, Europe, and the Middle East. Virology 2002, 298, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Scherret, J.H.; Poidinger, M.; Mackenzie, J.S.; Broom, A.K.; Deubel, V.; Lipkin, W.I.; Briese, T.; Gould, E.A.; Hall, R.A. The Relationships between West Nile and Kunjin Viruses. Emerg. Infect. Dis. 2001, 7, 697–705. [Google Scholar] [CrossRef]
- Hall, R.A.; Scherret, J.H.; Mackenzie, J.S. Kunjin Virus: An Australian Variant of West Nile? Ann. N. Y. Acad. Sci. 2001, 951, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Frost, M.J.; Zhang, J.; Edmonds, J.H.; Prow, N.A.; Gu, X.; Davis, R.; Hornitzky, C.; Arzey, K.E.; Finlaison, D.; Hick, P.; et al. Characterization of Virulent West Nile Virus Kunjin Strain, Australia, 2011. Emerg. Infect. Dis. 2012, 18, 792. [Google Scholar] [CrossRef] [PubMed]
- Galiana-Arnoux, D.; Dostert, C.; Schneemann, A.; Hoffmann, J.A.; Imler, J.L. Essential Function In Vivo for Dicer-2 in Host Defense against RNA Viruses in Drosophila. Nat. Immunol. 2006, 7, 590–597. [Google Scholar] [CrossRef]
- Burdette, D.L.; Monroe, K.M.; Sotelo-Troha, K.; Iwig, J.S.; Eckert, B.; Hyodo, M.; Hayakawa, Y.; Vance, R.E. STING Is a Direct Innate Immune Sensor of Cyclic Di-GMP. Nature 2011, 478, 515–518. [Google Scholar] [CrossRef]
- Dostert, C.; Jouanguy, E.; Irving, P.; Troxler, L.; Galiana-Arnoux, D.; Hetru, C.; Hoffmann, J.A.; Imler, J.L. The Jak-STAT Signaling Pathway Is Required but Not Sufficient for the Antiviral Response of Drosophila. Nat. Immunol. 2005, 6, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Goic, B.; Vodovar, N.; Mondotte, J.A.; Monot, C.; Frangeul, L.; Blanc, H.; Gausson, V.; Vera-Otarola, J.; Cristofari, G.; Saleh, M.C. RNA Mediated Interference and Reverse Transcription Control the Persistence of RNA Viruses in the Insect Model Drosophila. Nat. Immunol. 2013, 14, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hopkins, K.; Sabin, L.; Yasunaga, A.; Subramanian, H.; Lamborn, I.; Gordesky-Gold, B.; Cherry, S. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc. Natl. Acad. Sci. USA 2013, 110, 15025–15030. [Google Scholar] [CrossRef] [PubMed]
- Alfa, R.W.; Park, S.; Skelly, K.R.; Poffenberger, G.; Jain, N.; Gu, X.; Kockel, L.; Wang, J.; Liu, Y.; Powers, A.C.; et al. Suppression of Insulin Production and Secretion by a Decretin Hormone. Cell Metlab. 2015, 21, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Perrimon, N. Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion. Cell 2012, 151, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wiater, E.; Zhang, X.; Thomas, J.B.; Montminy, M. Crtc Modulates Fasting Programs Associated with 1-C Metabolism and Inhibition of Insulin Signaling. Proc. Natl. Acad. Sci. USA 2021, 118, e2024865118. [Google Scholar] [CrossRef] [PubMed]
- Chopra, G.; Kaushik, S.; Kain, P. Nutrient Sensing via Gut in Drosophila Melanogaster. Int. J. Mol. Sci. 2022, 23, 2694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sakoda, H.; Nakazato, Y.; Islam, M.N.; Pattou, F.; Kerr-Conte, J.; Nakazato, M. Neuromedin U Uses Gαi2 and Gαo to Suppress Glucose-Stimulated Ca2+ Signaling and Insulin Secretion in Pancreatic β Cells. PLoS ONE 2021, 16, e0250232. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, H.; Hanada, R. Neuromedin U, a Key Molecule in Metabolic Disorders. Int. J. Mol. Sci. 2021, 22, 4238. [Google Scholar] [CrossRef]
- Zhang, W.; Sakoda, H.; Nakazato, M. Neuromedin U Suppresses Insulin Secretion by Triggering Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Pancreatic β-Cells—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31914613/ (accessed on 27 March 2024).
- Hackett, B.A.; Cherry, S. Flavivirus Internalization Is Regulated by a Size-Dependent Endocytic Pathway. Proc. Natl. Acad. Sci. USA 2018, 115, 4246–4251. [Google Scholar] [CrossRef]
- Chosewood, L.C.; Wilson, D.E. Biosafety in Microbiological and Biomedical Laboratories; US Department of Health and Human Services: Washington, DC, USA, 2009.
- Lu, Y.; Cen, W.; Wang, W.; Huang, Y.; Chen, H. How big is big hazard ratio in clinical trial? Int. J. Clin. Trials 2023, 10, 195–200. [Google Scholar] [CrossRef]
- Stefanatos, R.; Sriram, A.; Kiviranta, E.; Mohan, A.; Ayala, V.; Jacobs, H.T.; Pamplona, R.; Sanz, A. dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster. Cell Cycle 2012, 11, 3876–3886. [Google Scholar] [CrossRef]
- Post, S.; Tatar, M. Nutritional Geometric Profiles of Insulin/IGF Expression in Drosophila Melanogaster. PLoS ONE 2016, 11, e0155628. [Google Scholar] [CrossRef]
- Deddouche, S.; Matt, N.; Budd, A.; Mueller, S.; Kemp, C.; Galiana-Arnoux, D.; Dostert, C.; Antoniewski, C.; Hoffmann, J.A.; Imler, J.L. The DExD/H-Box Helicase Dicer-2 Mediates the Induction of Antiviral Activity in Drosophila. Nat. Immunol. 2008, 9, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, M.J.; Marr, M.T. FOXO Regulates RNA Interference in Drosophila and Protects from RNA Virus Infection. Proc. Natl. Acad. Sci. USA 2015, 112, 14587–14592. [Google Scholar] [CrossRef]
- Nässel, D.R.; Broeck, J.V. Insulin/IGF Signaling in Drosophila and Other Insects: Factors That Regulate Production, Release and Post-Release Action of the Insulin-like Peptides. Cell. Mol. Life Sci. 2016, 73, 271–290. [Google Scholar] [CrossRef]
- Grönke, S.; Clarke, D.F.; Broughton, S.; Andrews, T.D.; Partridge, L. Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLoS Genet. 2010, 6, e1000857. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.A.; Fan, Y.; Cao, C.; Brown, M.R. Molecular Characterization of Insulin-like Peptides in the Yellow Fever Mosquito, Aedes Aegypti: Expression, Cellular Localization, and Phylogeny. Peptides 2006, 27, 2547–2560. [Google Scholar] [CrossRef]
- Krieger, M.J.B.; Jahan, N.; Riehle, M.A.; Cao, C.; Brown, M.R. Molecular Characterization of Insulin-like Peptide Genes and Their Expression in the African Malaria Mosquito, Anopheles Gambiae. Insect Mol. Biol. 2004, 13, 305–315. [Google Scholar] [CrossRef]
- Rulifson, E.J.; Kim, S.K.; Nusse, R. Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes. Science 2002, 296, 1118–1120. [Google Scholar] [CrossRef]
- Nagarkar-Jaiswal, S.; Lee, P.T.; Campbell, M.E.; Chen, K.; Anguiano-Zarate, S.; Cantu Gutierrez, M.; Busby, T.; Lin, W.W.; He, Y.; Schulze, K.L.; et al. A Library of MiMICs Allows Tagging of Genes and Reversible, Spatial and Temporal Knockdown of Proteins in Drosophila. eLife 2015, 4, e05338. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Dou, X.; Eum, J.H.; Harrison, R.E.; Brown, M.R.; Strand, M.R. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2023, 163, 104028. [Google Scholar] [CrossRef] [PubMed]
- Bronkhorst, A.W.; van Cleef, K.W.; Vodovar, N.; İnce, İ.A.; Blanc, H.; Vlak, J.M.; Saleh, M.C.; van Rij, R.P. The DNA Virus Invertebrate Iridescent Virus 6 Is a Target of the Drosophila RNAi Machinery. Proc. Natl. Acad. Sci. USA 2012, 109, E3604–E3613. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.; Mueller, S.; Goto, A.; Barbier, V.; Paro, S.; Bonnay, F.; Dostert, C.; Troxler, L.; Hetru, C.; Meignin, C.; et al. Broad RNA Interference–Mediated Antiviral Immunity and Virus-Specific Inducible Responses in Drosophila. J. Immunol. 2013, 190, 650–658. [Google Scholar] [CrossRef]
- Chotkowski, H.L.; Ciota, A.T.; Jia, Y.; Puig-Basagoiti, F.; Kramer, L.D.; Shi, P.Y.; Glaser, R.L. West Nile Virus Infection of Drosophila Melanogaster Induces a Protective RNAi Response. Virology 2008, 377, 197–206. [Google Scholar] [CrossRef]
- Colpitts, T.M.; Cox, J.; Vanlandingham, D.L.; Feitosa, F.M.; Cheng, G.; Kurscheid, S.; Wang, P.; Krishnan, M.N.; Higgs, S.; Fikrig, E. Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses. PLoS Pathog. 2011, 7, e1002189. [Google Scholar] [CrossRef]
- Paradkar, P.N.; Trinidad, L.; Voysey, R.; Duchemin, J.B.; Walker, P.J. Secreted Vago Restricts West Nile Virus Infection in Culex Mosquito Cells by Activating the Jak-STAT Pathway. Proc. Natl. Acad. Sci. USA 2012, 109, 18915–18920. [Google Scholar] [CrossRef]
- Paradkar, P.N.; Duchemin, J.B.; Voysey, R.; Walker, P.J. Dicer-2-Dependent Activation of Culex Vago Occurs via the TRAF-Rel2 Signaling Pathway. PLoS Neglected Trop. Dis. 2014, 8, e2823. [Google Scholar] [CrossRef]
- Choi, N.H.; Lucchetta, E.; Ohlstein, B. Nonautonomous Regulation of Drosophila Midgut Stem Cell Proliferation by the Insulin-Signaling Pathway. Proc. Natl. Acad. Sci. USA 2011, 108, 18702–18707. [Google Scholar] [CrossRef]
- Nuss, A.B.; Brown, M.R.; Murty, U.S.; Gulia-Nuss, M. Insulin Receptor Knockdown Blocks Filarial Parasite Development and Alters Egg Production in the Southern House Mosquito, Culex quinquefasciatus. PLoS Neglected Trop. Dis. 2018, 12, e0006413. [Google Scholar] [CrossRef]
- Marques, J.T.; Imler, J.L. The Diversity of Insect Antiviral Immunity: Insights from Viruses. Curr. Opin. Microbiol. 2016, 32, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Van Rij, R.P.; Saleh, M.C.; Berry, B.; Foo, C.; Houk, A.; Antoniewski, C.; Andino, R. The RNA Silencing Endonuclease Argonaute 2 Mediates Specific Antiviral Immunity in Drosophila Melanogaster. Genes Dev. 2006, 20, 2985–2995. [Google Scholar] [CrossRef] [PubMed]
- West, C.; Silverman, N. P38b and JAK-STAT Signaling Protect against Invertebrate Iridescent Virus 6 Infection in Drosophila. PLoS Pathog. 2018, 14, e1007020. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liang, Z.; Xue, L. Neuromedin U: Potential Roles in Immunity and Inflammation. Immunology 2021, 162, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Huang, W.L.; Lee, W.Y.; Luo, C.W. Identifying a Neuromedin U Receptor 2 Splice Variant and Determining Its Roles in the Regulation of Signaling and Tumorigenesis In Vitro. PLoS ONE 2015, 10, e0136836. [Google Scholar] [CrossRef] [PubMed]
- Hoover, L.I.; Fredericksen, B.L. IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts. Viruses 2014, 6, 1424–1441. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Travers, J.B.; Somani, A.K.; Spandau, D.F. The IGF-1/IGF-1R Signaling Axis in the Skin: A New Role for the Dermis in Aging-Associated Skin Cancer. Oncogene 2010, 29, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.B.; Oxvig, C.; Overgaard, M.T.; Sottrup-Jensen, L.; Gleich, G.J.; Hays, L.G.; Yates, J.R.; Conover, C.A. The Insulin-like Growth Factor (IGF)-Dependent IGF Binding Protein-4 Protease Secreted by Human Fibroblasts Is Pregnancy-Associated Plasma Protein-A. Proc. Natl. Acad. Sci. USA 1999, 96, 3149–3153. [Google Scholar] [CrossRef]
- Galenza, A.; Foley, E. Immunometabolism: Insights from the Drosophila Model. Dev. Comp. Immunol. 2019, 94, 22–34. [Google Scholar] [CrossRef]
- Libert, S.; Chao, Y.; Zwiener, J.; Pletcher, S.D. Realized Immune Response Is Enhanced in Long-Lived Puc and Chico Mutants but Is Unaffected by Dietary Restriction. Mol. Immunol. 2008, 45, 810–817. [Google Scholar] [CrossRef]
- Bernal, A.; Kimbrell, D.A. Drosophila Thor Participates in Host Immune Defense and Connects a Translational Regulator with Innate Immunity. Proc. Natl. Acad. Sci. USA 2000, 97, 6019–6024. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Loch, G.; Beyer, M.; Zinke, I.; Aschenbrenner, A.C.; Carrera, P.; Inhester, T.; Schultze, J.L.; Hoch, M. FOXO-Dependent Regulation of Innate Immune Homeostasis. Nature 2010, 463, 369–373. [Google Scholar] [CrossRef]
- Trammell, C.E.; Ramirez, G.; Sanchez-Vargas, I.; St Clair, L.A.; Ratnayake, O.C.; Luckhart, S.; Perera, R.; Goodman, A.G. Coupled Small Molecules Target RNA Interference and JAK/STAT Signaling to Reduce Zika Virus Infection in Aedes aegypti. PLoS Pathog. 2022, 18, e1010411. [Google Scholar] [CrossRef] [PubMed]
- Bar, R.S.; Gorden, P.H.I.L.L.I.P.; Roth, J.E.S.S.E.; Kahn, C.R.; De Meyts, P.I.E.R.R.E. Fluctuations in the Affinity and Concentration of Insulin Receptors on Circulating Monocytes of Obese Patients: Effects of Starvation, Refeeding, and Dieting. J. Clin. Investig. 1976, 58, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Sukhanov, S.; Shai, S.Y.; Danchuk, S.; Tang, R.; Snarski, P.; Li, Z.; Lobelle-Rich, P.; Wang, M.; Wang, D.; et al. Insulin-Like Growth Factor 1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E Deficient Mice. Circulation 2016, 133, 2263–2278. [Google Scholar] [CrossRef]
- Ratter, J.M.; van Heck, J.I.; Rooijackers, H.M.; Jansen, H.J.; van Poppel, P.C.; Tack, C.J.; Stienstra, R. Insulin Acutely Activates Metabolism of Primary Human Monocytes and Promotes a Proinflammatory Phenotype. J. Leukoc. Biol. 2021, 110, 885–891. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Wang, J.; Zheng, R.; Wang, D.; Yu, R.; Liu, B. Neuromedin U Induces Pulmonary ILC2 Activation via the NMUR1 Pathway during Acute Respiratory Syncytial Virus Infection. Am. J. Respir. Cell Mol. Biol. 2023, 68, 256–266. [Google Scholar] [CrossRef]
- Yang, G.; Huang, H.; Tang, M.; Cai, Z.; Huang, C.; Qi, B.; Chen, J. Role of Neuromedin B and Its Receptor in the Innate Immune Responses against Influenza a Virus Infection In Vitro and In Vivo. Vet. Res. 2019, 50, 80. [Google Scholar] [CrossRef]
- Strand, M.R.; Brown, M.R.; Vogel, K.J. Mosquito Peptide Hormones: Diversity, Production, and Function. Adv. Insect Physiol. 2016, 51, 145–188. [Google Scholar] [CrossRef]
- Mehrotra, S.; Lam, S.; Glenn, E.; Hymel, D.; Sanford, C.A.; Liu, Q.; Herich, J.; Wulff, B.S.; Meek, T.H. Unanticipated Characteristics of a Selective, Potent Neuromedin-U Receptor 2 Agonist. ACS Biol. Med. Chem. 2022, 2, 370–375. [Google Scholar] [CrossRef]
Experiment # | Hazard Ratio (LstMI06290/y1w1) | p-Value |
---|---|---|
1 | 0.3181 | 0.0002 |
2 | 0.1297 | <0.0001 |
3 | 0.3570 | 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mead, E.B.; Lee, M.; Trammell, C.E.; Goodman, A.G. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. Insects 2024, 15, 446. https://doi.org/10.3390/insects15060446
Mead EB, Lee M, Trammell CE, Goodman AG. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. Insects. 2024; 15(6):446. https://doi.org/10.3390/insects15060446
Chicago/Turabian StyleMead, Ezra B., Miyoung Lee, Chasity E. Trammell, and Alan G. Goodman. 2024. "Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection" Insects 15, no. 6: 446. https://doi.org/10.3390/insects15060446
APA StyleMead, E. B., Lee, M., Trammell, C. E., & Goodman, A. G. (2024). Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. Insects, 15(6), 446. https://doi.org/10.3390/insects15060446