Mitochondrial Gene Expression of Three Different Dragonflies Under the Stress of Chlorpyrifos
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection and CPF Treatment
2.2. DNA Extraction and Sequencing
2.3. Mitogenome Assembly and Annotation
2.4. RNA Extraction, cDNA Synthesis, Primer Design
Gene | Species | Gene Forward Primers (5′ to 3′) | Reverse Primers (5′ to 3′) |
---|---|---|---|
β-actin | A. parthenope | GAAACCGTCTACAACTCAATCA | GCATCCTGTCAGCAATACC |
G. confluens | AACCGTCTACAACTCAATCA | TCCTTCTGCATCCTGTCA | |
E. elegans | ACCGTCTACAACTCCATCAT | GCATCCTGTCAGCAATACC | |
COI | A. parthenope | TAGGAGCACCCGATATAGC | CACCAGCAAGAGGAGGAT |
G. confluens | ATACCACGACGATACTCTGA | GTGCTGCTATGGCTTCTC | |
E. elegans | GCTGGAATGGTTGGAACA | CGTGTGCTGTGACAATAAC | |
COII | A. parthenope | GCTTGAACTGTCCTTCCA | ACCACTGATGTCCTACTGT |
G. confluens | GAAGTAGATAACCGAGCAGTT | GTCCTGGAGTTGCGTCTA | |
E. elegans | AGGAGGACTTCGCTTACTT | GTGTAGCATCAACCTTAACTC | |
COIII | A. parthenope | TTCACAGAAGTCTATCTCCAAC | GTTACAGTTACTCCTGATGCTA |
G. confluens | TGGTAATTGGACTACGATGAG | CCTTAGGAGGTCATATACTTCC | |
E. elegans | ACCATTCACAATCGCAGAT | AAGGCAATGTCGTATTAAGC | |
ND1 | A. parthenope | GGTGGAGGATATATACTTGATG | GCTAAACAAGACGCAAATCA |
G. confluens | TTGCTGGTTGGGCTTCTAA | CTCGTAAGCCTCCCAATAAAG | |
E. elegans | TGCTGGATGAGCTTCTAATTC | TATGAAATAGTCTGAGCCACAG | |
ND2 | A. parthenope | GCTGTAGGAGGACTTAATCA | CCAAGATGTCTAATGGAAGA |
G. confluens | CCAAGCTATTGCTTCAGTAATC | GGAAATCAGAAATGGAAAGGAG | |
E. elegans | ATTTCCGGGAGTAATAGAAGG | GTGTAGATAGAAGGACTGAAGT | |
ND3 | A. parthenope | CCACTGCACGTATTCCTT | GCACCTTGATTTCATTCGT |
G. confluens | CCTACGATTCTTCTTGATTGC | GGTAATGTTTGATGCGGTAAG | |
E. elegans | GCACGAATCCCATTCTCTTTA | AAGTAGGGCAATTTCCACATC | |
ND4 | A. parthenope | GGATTAAGTGGTGCCTATACT | ATAAACTACGACTCCCAAGAC |
G. confluens | GCTCCTATTTCTGGATCTATGA | CAACAACTCCTCCTACTAATCT | |
E. elegans | GAGTTGGTATTGCTTTATTGGG | ACCTATATGAGCCACAGAAGA | |
ND5 | A. parthenope | GATAGAGTTGAAGCCCAAGTTA | AAGGCAGATACAGGAGTAGG |
G. confluens | TTAGGATGAGATGGGTTAGGT | CGATTAGAAAGCACAGTCAAC | |
E. elegans | ATGACTAAGAGTGCTCAGATTC | AAGCAGATACAGGAGTAGGAG | |
Atp6 | A. parthenope | GGAACTACAGGACATAATGGAA | GTGAATGCTAGATGACTTGAAC |
G. confluens | GCAGGACATCTTCTAATAACTC | GCTACTGCGGATTCTAATACT | |
E. elegans | TTACCAGAACCAGTCACATATC | CTGAGGAACTAAATGAGCAAAC | |
Cyt b | A. parthenope | GGGTGATTATTACGAACTCTTC | CTACTCCTACACTTCAAGTATG |
G. confluens | CGGATGACTTCTACGAACAT | CTCCAACTCTTCAAGTGTGA | |
E. elegans | CTGAGGAGCCACCGTAAT | GGCGTTATCTACTGCGAAT |
2.5. The Relative Transcription Levels of mtPCGs
3. Results
3.1. Mitochondrial Gene Expression Under 0.05 µg/L CPF Stress
3.2. Test the Target Gene Expressions Under 0.5 µg/L and 5 µg/L CPF Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñiz-González, A.-B.; Paoli, F.; Martínez-Guitarte, J.-L.; Lencioni, V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. Environ. Pollut. 2021, 290, 118061. [Google Scholar] [CrossRef]
- Ubaid Ur Rahman, H.; Asghar, W.; Nazir, W.; Sandhu, M.A.; Ahmed, A.; Khalid, N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ. 2021, 755, 142649. [Google Scholar] [CrossRef]
- Tilton, F.A.; Bammler, T.K.; Gallagher, E.P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 153, 9–16. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Sharma, P.; Pasrija, R.; Kaur, K.; Umesh, M.; Thazeem, B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol. Appl. Pharmacol. 2023, 474, 116623. [Google Scholar] [CrossRef]
- Flaskos, J. The developmental neurotoxicity of organophosphorus insecticides: A direct role for the oxon metabolites. Toxicol. Lett. 2012, 209, 86–93. [Google Scholar] [CrossRef]
- Costa, L.G. Organophosphorus compounds at 80: Some old and new issues. Toxicol. Sci. 2018, 162, 24–35. [Google Scholar] [CrossRef]
- Smallman, B.N.; Fisher, R.W. Effect of anticholinesterases on acetylcholini levels in insects. Canad. J. Biochem. Physiol. 1958, 36, 575–586. [Google Scholar] [CrossRef]
- Adedara, I.A.; Rosemberg, D.B.; de Souza, D.; Farombi, E.O.; Aschner, M.; Souza, D.O.; Rocha, J.B.T. Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. Pestic. Biochem. Physiol. 2016, 130, 22–30. [Google Scholar] [CrossRef]
- Di Nica, V.; González, A.B.M.; Lencioni, V.; Villa, S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environ. Sci. Pollut. Res. Int. 2020, 27, 30918–30926. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Menezes, C.H.M.; Cunha, W.S.; Alvarenga, T.M.; Barbosa, B.F.; Zanuncio, J.C.; Martínez, L.C.; Serrão, J.E. Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere 2020, 259, 127530. [Google Scholar] [CrossRef]
- Huang, X.; Cui, H.; Duan, W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf. 2020, 200, 110731. [Google Scholar] [CrossRef]
- Lee, G.H.; Choi, K.C. Adverse effects of pesticides on the functions of immune system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 235, 108789. [Google Scholar] [CrossRef]
- Ibrahim, K.; Abdelrahman, S.; Elhakim, H.; Ragab, E. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat’s brain. Environ. Sci. Pollut. Res. Int. 2020, 27, 12692–12703. [Google Scholar] [CrossRef]
- Kao, S.H.; Shofer, F.S.; Greenwood, J.C.; Alomaja, O.; Ranganathan, A.; Piel, S.; Mesaros, C.; Shin, S.S.; Ehinger, J.K.; Kilbaugh, T.J.; et al. Cell-free DNA as a biomarker in a rodent model of chlorpyrifos poisoning causing mitochondrial dysfunction. J. Med. Toxicol. 2023, 19, 352–361. [Google Scholar] [CrossRef]
- Crumpton, T.L.; Seidler, F.J.; Slotkin, T.A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Dev. Brain Res. 2000, 121, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Thosapornvichai, T.; Huangteerakul, C.; Jensen, A.N.; Jensen, L.T. Mitochondrial dysfunction from malathion and chlorpyrifos exposure is associated with degeneration of GABAergic neurons in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2022, 96, 104000. [Google Scholar] [CrossRef]
- Gupta, S.C.; Mishra, M.; Sharma, A.; Deepak Balaji, T.G.; Kumar, R.; Mishra, R.K.; Chowdhuri, D.K. Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol. Environ. Saf. 2010, 73, 1415–1423. [Google Scholar] [CrossRef]
- Cui, J.; Hao, Z.; Zhou, Q.; Qiu, M.; Liu, Y.; Liu, Y.; Teng, X.; Kang, L. Chlorpyrifos induced autophagy and mitophagy in common carp livers through AMPK pathway activated by energy metabolism disorder. Ecotoxicol. Environ. Saf. 2023, 258, 114983. [Google Scholar] [CrossRef]
- Falkenberg, M.; Larsson, N.-G.; Gustafsson, C.M. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 2007, 76, 679–699. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, T.; Kang, D. An overview of mammalian mitochondrial DNA replication mechanisms. J. Biochem. 2018, 164, 183–193. [Google Scholar] [CrossRef]
- D’Souza, A.R.; Minczuk, M. Mitochondrial transcription and translation: Overview. Essays Biochem. 2018, 62, 309–320. [Google Scholar]
- Hillen, H.S.; Temiakov, D.; Cramer, P. Structural basis of mitochondrial transcription. Nat. Struct. Mol. Biol. 2018, 25, 754–765. [Google Scholar] [CrossRef]
- Ruiz-Pesini, E.; Lott, M.T.; Procaccio, V.; Poole, J.C.; Brandon, M.C.; Mishmar, D.; Yi, C.; Kreuziger, J.; Baldi, P.; Wallace, D.C. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007, 35, D823–D828. [Google Scholar] [CrossRef] [PubMed]
- Tuppen, H.A.L.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutag. 2010, 51, 440–450. [Google Scholar] [CrossRef]
- Hong, Y.H.; Huang, H.M.; Wu, L.; Storey, K.B.; Zhang, J.Y.; Zhang, Y.P.; Yu, D.N. Characterization of two mitogenomes of Hyla sanchiangensis (Anura: Hylidae), with phylogenetic relationships and selection pressure analyses of Hylidae. Animals 2023, 13, 1593. [Google Scholar] [CrossRef]
- Shen, S.Q.; Cai, Y.Y.; Xu, K.K.; Chen, Q.P.; Cao, S.S.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Pedetontus zhejiangensis (Microcoryphia: Machilidae) and its phylogeny. Mitochondrial DNA Part B 2020, 5, 3143–3145. [Google Scholar] [CrossRef]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Insight into the phylogenetic relationships among three subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with low-temperature selection pressure analyses using mitogenomes. Insects 2021, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, L.; Li, K.; Hong, Y.; Storey, K.B.; Zhang, J.; Yu, D. Nine mitochondrial genomes of phasmatodea with two novel mitochondrial gene rearrangements and phylogeny. Insects 2023, 14, 485. [Google Scholar] [CrossRef]
- Li, K.; Yu, S.W.; Hu, H.; Feng, Y.F.; Storey, K.B.; Ma, Y.; Zhang, J.Y.; Yu, D.N. The phylogenetic relationship of Lamiinae (Coleoptera: Cerambycidae) using mitochondrial genomes. Genes 2024, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.F.; Latorre-Muro, P.; Puigserver, P. Mechanisms of mitochondrial respiratory adaptation. Nat. Rev. Mol. Cell Biol. 2022, 23, 817–835. [Google Scholar] [CrossRef]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Boveris, A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 1977, 78, 67–82. [Google Scholar]
- Lee, J.E.; Park, J.H.; Shin, I.C.; Koh, H.C. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol. Appl. Pharm. 2012, 263, 148–162. [Google Scholar] [CrossRef]
- Quan, Y.; Xin, Y.; Tian, G.; Zhou, J.; Liu, X. Mitochondrial ROS-modulated mtDNA: A potential target for cardiac aging. Oxidative Med. Cell Longev. 2020, 2020, 9423593. [Google Scholar] [CrossRef]
- Guderley, H. Metabolic responses to low temperature in fish muscle. Biol. Rev. 2004, 79, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Roede, J.R.; Jones, D.P. Reactive species and mitochondrial dysfunction: Mechanistic significance of 4-hydroxynonenal. Environ. Mol. Mutagen. 2010, 51, 380–390. [Google Scholar] [CrossRef]
- Swenberg, J.A.; Lu, K.; Moeller, B.C.; Gao, L.; Upton, P.B.; Nakamura, J.; Starr, T.B. Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 2011, 120 (Suppl. S1), S130–S145. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.; Ghram, A.; Dabbebi, H.; Mrad, M.B.; Abdrabbah, M. Reactive oxygen species, heat stress and oxidativeinduced mitochondrial damage. Rev. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef]
- Syromyatnikov, M.Y.; Gureev, A.P.; Starkova, N.N.; Savinkova, O.V.; Starkov, A.A.; Lopatin, A.V.; Popov, V.N. Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.). Pestic. Biochem. Physiol. 2020, 169, 104675. [Google Scholar] [CrossRef] [PubMed]
- Roubicek, D.A.; de Souza-Pinto, N.C. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology 2017, 391, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.H.; Yuan, Y.N.; Li, K.; Storey, K.B.; Zhang, J.Y.; Zhang, S.S.; Yu, D.N. Differential mitochondrial genome expression of four hylid frog species under low-temperature stress and its relationship with amphibian temperature adaptation. Int. J. Mol. Sci. 2024, 25, 5967. [Google Scholar] [CrossRef] [PubMed]
- He, J.Y.; Zhan, L.M.; Meng, S.Q.; Wang, Z.; Gao, L.L.; Wang, W.J.; Storey, K.B.; Zhang, Y.P.; Yu, D.N. Differential mitochondrial genome expression of three sympatric lizards in response to low-temperature stress. Animals 2024, 14, 1158. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhang, L.H.; Hong, Y.H.; Cai, L.N.; Storey, K.B.; Zhang, J.Y.; Zhang, S.S.; Yu, D.N. How does mitochondrial protein-coding gene expression in Fejervarya kawamurai (Anura: Dicroglossidae) respond to extreme temperatures? Animals 2023, 13, 3015. [Google Scholar] [CrossRef]
- Zhan, L.M.; He, J.Y.; Meng, S.Q.; Guo, Z.Q.; Chen, Y.X.; Storey, K.B.; Zhang, J.Y.; Yu, D.N. Mitochondrial protein-coding gene expression in the lizard Sphenomorphus incognitus (Squamata:Scincidae) responding to different temperature stresses. Animals 2024, 14, 1671. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.N.; Zhang, L.H.; Lin, Y.J.; Wang, J.Y.; Storey, K.B.; Zhang, J.Y.; Yu, D.N. Two-fold ND5 genes, three-fold control regions, lncRNA, and the “missing” ATP8 found in the mitogenomes of Polypedates megacephalus (Rhacophridae: Polypedates). Animals 2023, 13, 2857. [Google Scholar] [CrossRef]
- McMullen, D.; Storey, K.B. Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem. Mol. Biol. 2008, 38, 367–373. [Google Scholar] [CrossRef]
- Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Xu, X.D.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Choroterpes (Euthralus) yixingensis (Ephemeroptera: Leptophlebiidae) and its mitochondrial protein-coding gene expression under imidacloprid stress. Gene 2021, 800, 145833. [Google Scholar] [CrossRef] [PubMed]
- Dewer, Y.; Pottier, M.A.; Lalouette, L.; Maria, A.; Dacher, M.; Belzunces, L.P.; Kairo, G.; Renault, D.; Maibeche, M.; Siaussat, D. Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. Int. 2016, 23, 3086–3096. [Google Scholar] [CrossRef]
- Russo, R.; Haange, S.B.; Rolle-Kampczyk, U.; von Bergen, M.; Becker, J.M.; Liess, M. Identification of pesticide exposure-induced metabolic changes in mosquito larvae. Sci. Total Environ. 2018, 643, 1533–1541. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Gravato, C.; Quintaneiro, C.; Bordalo, M.D.; Golovko, O.; Žlábek, V.; Barata, C.; Soares, A.M.; Pestana, J.L. Exposure to chlorantraniliprole affects the energy metabolism of the caddisfly Sericostoma vittatum. Environ. Toxicol. Chem. 2017, 36, 1584–1591. [Google Scholar] [CrossRef]
- Ding, Y.R.; Yan, Z.T.; Si, F.L.; Li, X.D.; Mao, Q.M.; Asghar, S.; Chen, B. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pestic. Manag. Sci. 2019, 76, 769–778. [Google Scholar] [CrossRef]
- Hroudová, J.; Fišar, Z.; Korábečný, J.; Kuča, K. In vitro effects of acetylcholinesterase inhibitors and reactivators on Complex I of electron transport chain. Neuroendocrinol. Lett. 2011, 32, 259–263. [Google Scholar]
- Piruat, J.I.; López-Barneo, J. Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression. J. Biol. Chem. 2005, 280, 42676–42684. [Google Scholar] [CrossRef]
- Khambay, B.P.; Jewess, P. The potential of natural naphthoquinones as the basis for a new class of pest control agents—An overview of research at IACR-Rothamsted. Crop. Prot. 2000, 19, 597–601. [Google Scholar] [CrossRef]
- Remsburg, A.J.; Olson, A.C.; Samways, M.J. Shade alone reduces adult dragonfly (Odonata: Libellulidae) abundance. J. Insect Behav. 2008, 21, 460–468. [Google Scholar] [CrossRef]
- Balian, E.V.; Segers, H.; Lévéque, C.; Martens, K. The freshwater animal diversity assessment: An overview of the results. Hydrobiologia 2008, 595, 627–637. [Google Scholar] [CrossRef]
- Chang, X.; Zhai, B.; Wang, M.; Wang, B. Relationship between exposure to an insecticide and fluctuating asymmetry in a damselfly (Odonata, Coenagriidae). Hydrobiologia 2007, 586, 213–220. [Google Scholar] [CrossRef]
- Gómez-Anaya, J.A.; Novelo-Gutiérrez, R. A case of successful restoration of a tropical wetland, evaluated through its Odonata (Insecta) larval assemblage. Rev. Biol. Trop. 2015, 63, 1043–1058. [Google Scholar] [CrossRef]
- Gómez-Tolosa, M.; Rivera-Velázquez, G.; Rioja-Paradela, T.M.; Mendoza-Cuenca, L.F.; Tejeda-Cruz, C.; López, S. The use of Odonata species for environmental assessment: A meta-analysis for the Neotropical region. Environ. Sci. Pollut. Res. Int. 2021, 28, 1381–1396. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.E.; Kotalik, C.J.; Willacker, J.J.; Tate, M.T.; Pritz, C.M.F.; Nelson, S.J.; Krabbenhoft, D.P.; Walters, D.M.; Eagles-Smith, C.A. Geographic drivers of mercury entry into aquatic food webs revealed by mercury stable isotopes in dragonfly larvae. Environ. Sci. Technol. 2024, 58, 13444–13455. [Google Scholar] [CrossRef]
- Springate-Baginski, O.; Allen, D. An Integrated Wetland Assessment Toolkit: A Guide to Good Practice; Darwall, W.R.T., Ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2009. [Google Scholar]
- Yu, X.; Bu, W.; Zhu, L. Research advances in eco-environment assessment using dragonfly as a bioindicator. Chin. J. Ecol 2012, 31, 1585–1590. [Google Scholar]
- Van Praet, N.; De Bruyn, L.; De Jonge, M.; Vanhaecke, L.; Stoks, R.; Bervoets, L. Can damselfly larvae (Ischnura elegans) be used as bioindicators of sublethal effects of environmental contamination? Aquat. Toxicol. 2014, 154, 270–277. [Google Scholar] [CrossRef] [PubMed]
- de Beeck, L.O.; Verheyen, J.; Stoks, R. Strong differences between two congeneric species in sensitivity to pesticides in a warming world. Sci. Total Environ. 2018, 618, 60–69. [Google Scholar] [CrossRef]
- Tennessen, K.J. Dragonfly Nymphs of North America: An Identification Guide, 1st ed.; Springer: New York, NY, USA, 2019; 620p. [Google Scholar]
- Calvert, P.P. The rates of growth, larval development and seasonal distribution of dragonflies of the genus Anax (Odonata: Aeshnidæ). Proc. Am. Philos. Soc. 1934, 73, 1–70. [Google Scholar]
- Butler, S.G. The larva of Gomphidia t-nigrum Selys from Nepal (Anisoptera: Gomphidae). Odonatologica 2007, 36, 399–403. [Google Scholar]
- EPA. National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 12 December 2024).
- Flomer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Burland, T.G. DNASTAR’s lasergene sequence analysis software. In Bioinformatics Methods and Protocols; Misener, S., Krawetz, S.A., Eds.; Humana Press: Totowa, NJ, USA, 2000; Volume 132, pp. 71–91. [Google Scholar]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogen. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Koopman, W.J.H.; Nijtmans, L.G.J.; Dieteren, C.E.J.; Roestenberg, P.; Valsecchi, F.; Smeitink, J.A.M.; Willems, P.H.G.M. Mammalian mitochondrial complex I: Biogenesis, regulation, and reactive oxygen species generation. Antioxid. Redox Signal. 2010, 12, 1431–1470. [Google Scholar] [CrossRef]
- Hidalgo-Gutiérrez, A.; González-García, P.; Díaz-Casado, M.E.; Barriocanal-Casado, E.; López-Herrador, S.; Quinzii, C.M.; López, L.C. Metabolic targets of Coenzyme Q10 in mitochondria. Antioxidants 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Acín-Pérez, R.; Bayona-Bafaluy, M.P.; Fernández-Silva, P.; Moreno-Loshuertos, R.; Pérez-Martos, A.; Bruno, C.; Moraes, C.T.; Enríquez, J.A. Respiratory complex III Is required to maintain complex I in mammalian mitochondria. Mol. Cell 2004, 13, 805–815. [Google Scholar] [CrossRef]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 143–183. [Google Scholar] [CrossRef]
- Seth, E.; Ahsan, A.U.; Kaushal, S.; Mehra, S.; Chopra, M. Berberine affords protection against oxidative stress and apoptotic damage in F1 generation of wistar rats following lactational exposure to chlorpyrifos. Pestic. Biochem. Physiol. 2021, 179, 104977. [Google Scholar] [CrossRef] [PubMed]
- Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ. Sci. Pollut. Res. Int. 2020, 27, 24799–24814. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Bjorklund, M.; Xu, S. Mitochondrial fragmentation and ROS signaling in wound response and repair. Cell Regen. 2022, 11, 38. [Google Scholar] [CrossRef]
- Wang, W.; Yang, L.L.; Luo, S.M.; Ma, J.Y.; Zhao, Y.; Shen, W.; Yin, S. Toxic effects and possible mechanisms following malathion exposure in porcine granulosa cells. Environ. Toxicol. Pharmacol. 2018, 64, 172–180. [Google Scholar] [CrossRef]
- Yan, W.; Kang, Y.; Ji, X.; Li, S.; Li, Y.; Zhang, G.; Cui, H.; Shi, G. Testosterone upregulates the expression of mitochondrial ND1 and ND4 and alleviates the oxidative damage to the nigrostriatal dopaminergic system in orchiectomized rats. Oxidative Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Kalmar, B.; Greensmith, L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Del. Rev. 2009, 61, 310–318. [Google Scholar] [CrossRef]
- Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 2018, 11, 2. [Google Scholar] [CrossRef]
- Xing, H.; Wang, Z.; Wu, H.; Zhao, X.; Liu, T.; Li, S.; Xu, S. Assessment of pesticide residues and gene expression in common carp exposed to atrazine and chlorpyrifos: Health risk assessments. Ecotoxicol. Environ. Saf. 2015, 113, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, Z.; Yao, H.; Liang, Y.; Xing, H.; Xu, S. Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2015, 44, 12–20. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Ren, L.; Feng, W.; Lv, P.; Wu, W.; Yan, Y. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. J. Hazard. Mater. 2017, 334, 121–131. [Google Scholar] [CrossRef]
- Dilberger, B.; Baumanns, S.; Schmitt, F.; Schmiedl, T.; Hardt, M.; Wenzel, U.; Eckert, G.P. Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxidative Med. Cell. Longev. 2019, 2019, 6840540. [Google Scholar] [CrossRef]
- Corbet, P.S. Dragonflies: Behaviour and Ecology of Odonata; Harley Books: Colchester, UK, 1999. [Google Scholar]
- Brogan, W.R., III; Relyea, R.A. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities. PLoS ONE 2015, 10, e0126677. [Google Scholar] [CrossRef]
- Brogan, W.R.; Relyea, R.A. A new mechanism of macrophyte mitigation: How submerged plants reduce malathion’s acute toxicity to aquatic animals. Chemosphere 2014, 108, 405–410. [Google Scholar] [CrossRef]
- Giesy, J.P.; Graney, R.L.; Newsted, J.L.; Rosiuand, C.J.; Benda, A.; Kreis, R.G., Jr.; Horvath, F.J. Comparison of three sediment bioassay methods using detroit river sediments. Environ. Toxicol. Chem. 1988, 7, 483–498. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, Z.; Guo, Z.; Zhan, L.; Storey, K.B.; Yu, D.; Zhang, J. Mitochondrial Gene Expression of Three Different Dragonflies Under the Stress of Chlorpyrifos. Insects 2025, 16, 85. https://doi.org/10.3390/insects16010085
Chen Y, Yang Z, Guo Z, Zhan L, Storey KB, Yu D, Zhang J. Mitochondrial Gene Expression of Three Different Dragonflies Under the Stress of Chlorpyrifos. Insects. 2025; 16(1):85. https://doi.org/10.3390/insects16010085
Chicago/Turabian StyleChen, Yuxin, Ziwen Yang, Zhiqiang Guo, Lemei Zhan, Kenneth B. Storey, Danna Yu, and Jiayong Zhang. 2025. "Mitochondrial Gene Expression of Three Different Dragonflies Under the Stress of Chlorpyrifos" Insects 16, no. 1: 85. https://doi.org/10.3390/insects16010085
APA StyleChen, Y., Yang, Z., Guo, Z., Zhan, L., Storey, K. B., Yu, D., & Zhang, J. (2025). Mitochondrial Gene Expression of Three Different Dragonflies Under the Stress of Chlorpyrifos. Insects, 16(1), 85. https://doi.org/10.3390/insects16010085