Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing of Larvae and Configuration of the Experiment
2.2. Feed Formulation and Feeding Process
2.3. Biometric and Nutritional Characteristics of Larvae
2.3.1. Weigh
2.3.2. Dry Matter and Ash Content
2.3.3. Protein Content
2.3.4. Fat Content
2.4. Calculation of Bioconversion Performance
2.5. Quantification of Selected Groups of Microorganisms (Microbial Counts)
2.6. Microbial Communities of BSFL (DNA Analysis)
2.7. Data Analysis
3. Results
3.1. Food Diet Characteristics and Bioconversion Performance
3.2. The Impact of Different Waste Storage Approaches on the Content of Proteins and Lipids in BSFL
3.3. Quantitative Determinations of Microbial Groups
3.4. Bacterial Diversity
3.5. Fungal Diversity
3.6. Correlations Between Bioconversion and the Larval Microbiome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, C.-H.; Ryu, J.; Lee, J.; Ko, K.; Lee, J.-y.; Park, K.Y.; Chung, H. Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: A review. Processes 2021, 9, 161. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Mishra, S.; Banerjee, A.; Chattaraj, S.; Samantaray, A.; Panigrahi, S.; Bauri, K.P.; Thatoi, H. Microbial process in anaerobic digestion of food wastes for biogas production: A review. Syst. Microbiol. Biomanuf. 2024, 1–19. [Google Scholar] [CrossRef]
- Flanagan, K.; Robertson, K.; Hanson, C. Reducing Food Loss and Waste: Setting the Global Action Agenda; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Zhang, J. Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development. Geosci. Front. 2024, 15, 101873. [Google Scholar] [CrossRef]
- Moustakas, K.; Loizidou, M. Advances and prospects in the field of waste management. Environ. Sci. Pollut. Res. 2019, 26, 35283–35287. [Google Scholar] [CrossRef]
- Scherhaufer, S.; Moates, G.; Hartikainen, H.; Waldron, K.; Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 2018, 77, 98–113. [Google Scholar] [CrossRef]
- Stancu, V.; Haugaard, P.; Lähteenmäki, L. Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7–17. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Huis, A.v.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Dortmans, B.; Diener, S.; Bart, V.; Zurbrügg, C. Black Soldier Fly Biowaste Processing: A Step-by-Step Guide; eawag: Dübendorf, Switzerland, 2017. [Google Scholar]
- Sheppard, D.C.; Newton, G.L.; Thompson, S.A.; Savage, S. A value added manure management system using the black soldier fly. Bioresour. Technol. 1994, 50, 275–279. [Google Scholar] [CrossRef]
- Gligorescu, A.; Toft, S.; Hauggaard-Nielsen, H.; Axelsen, J.A.; Nielsen, S.A. Development, growth and metabolic rate of Hermetia illucens larvae. J. Appl. Entomol. 2019, 143, 875–881. [Google Scholar] [CrossRef]
- Zurbrügg, C.; Dortmans, B.; Fadhila, A.; Verstappen, B.; Diener, S. From pilot to full scale operation of a waste-to-protein treatment facility. Detritus 2018, 1, 18–22. [Google Scholar]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- Rehman, K.U.; Hollah, C.; Wiesotzki, K.; Rehman, R.U.; Rehman, A.U.; Zhang, J.; Zheng, L.; Nienaber, T.; Heinz, V.; Aganovic, K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Manag. Res. 2023, 41, 81–97. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Blum, M.S. The limits of entomophagy: A discretionary gourmand in a world of toxic insects. Food Insects Newsl. 1994, 7, 1–6. [Google Scholar]
- Barre, A.; Caze-Subra, S.; Gironde, C.; Bienvenu, F.; Bienvenu, J.; Rougé, P. Entomophagie et risque allergique. Rev. Française D’allergol. 2014, 54, 315–321. [Google Scholar] [CrossRef]
- Bosch, G.; Oonincx, D.; Jordan, H.; Zhang, J.; Van Loon, J.; Van Huis, A.; Tomberlin, J.K. Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed 2020, 6, 95–109. [Google Scholar] [CrossRef]
- Sheng, K.; Miao, H.; Ni, J.; Yang, K.; Gu, P.; Ren, X.; Xiong, J.; Zhang, Z. Deeper insight into the storage time of food waste on black soldier fly larvae growth and nutritive value: Interactions of substrate and gut microorganisms. Sci. Total Environ. 2024, 951, 175759. [Google Scholar] [CrossRef]
- Quan, J.; Wang, Y.; Cheng, X.; Li, C.; Yuan, Z. Revealing the effects of fermented food waste on the growth and intestinal microorganisms of black soldier fly (Hermetia illucens) larvae. Waste Manag. 2023, 171, 580–589. [Google Scholar] [CrossRef]
- Swinscoe, I.; Oliver, D.M.; Ørnsrud, R.; Quilliam, R.S. The microbial safety of seaweed as a feed component for black soldier fly (Hermetia illucens) larvae. Food Microbiol. 2020, 91, 103535. [Google Scholar] [CrossRef]
- Committee, E.S. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Shi, C.; Xie, P.; Ding, Z.; Niu, G.; Wen, T.; Gu, W.; Lu, Y.; Wang, F.; Li, W.; Zeng, J. Inhibition of pathogenic microorganisms in solid organic waste via black soldier fly larvae-mediated management. Sci. Total Environ. 2024, 913, 169767. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- IJdema, F.; De Smet, J.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol. Ecol. 2022, 98, fiac094. [Google Scholar] [CrossRef]
- Phillips, L.E.; Sotelo, K.L.; Moran, N.A. Characterization of gut symbionts from wild-caught Drosophila and other Diptera: Description of Utexia brackfieldae gen. nov., sp. nov., Orbus sturtevantii sp. nov., Orbus wheelerorum sp. nov, and Orbus mooreae sp. nov. Int. J. Syst. Evol. Microbiol. 2024, 74, 006516. [Google Scholar] [CrossRef]
- Tanga, C.M.; Waweru, J.W.; Tola, Y.H.; Onyoni, A.A.; Khamis, F.M.; Ekesi, S.; Paredes, J.C. Organic waste substrates induce important shifts in gut microbiota of black soldier fly (Hermetia illucens L.): Coexistence of conserved, variable, and potential pathogenic microbes. Front. Microbiol. 2021, 12, 635881. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Brulé, L.; Misery, B.; Baudouin, G.; Yan, X.; Guidou, C.; Trespeuch, C.; Foltyn, C.; Anthoine, V.; Moriceau, N.; Federighi, M. Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods 2024, 13, 1587. [Google Scholar] [CrossRef]
- Raimondi, S.; Spampinato, G.; Macavei, L.I.; Lugli, L.; Candeliere, F.; Rossi, M.; Maistrello, L.; Amaretti, A. Effect of rearing temperature on growth and microbiota composition of Hermetia illucens. Microorganisms 2020, 8, 902. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef]
- Varotto Boccazzi, I.; Ottoboni, M.; Martin, E.; Comandatore, F.; Vallone, L.; Spranghers, T.; Eeckhout, M.; Mereghetti, V.; Pinotti, L.; Epis, S. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS ONE 2017, 12, e0182533. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Wang, X.; Xu, X.; Cai, R.; Xie, S. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicol. Environ. Saf. 2020, 192, 110323. [Google Scholar] [CrossRef] [PubMed]
- Van Looveren, N.; Verbaet, L.; Frooninckx, L.; Van Miert, S.; Van Campenhout, L.; Van Der Borght, M.; Vandeweyer, D. Effect of heat treatment on microbiological safety of supermarket food waste as substrate for black soldier fly larvae (Hermetia illucens). Waste Manag. 2023, 164, 209–218. [Google Scholar] [CrossRef]
- Ruiz, R.P. Gravimetric determination of water by drying and weighing. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- ISO 4833-1; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:4833:-1:ed-1:v1:en (accessed on 10 October 2024).
- ISO 21528-1; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection of Enterobacteriaceae. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:21528:-1:ed-2:v1:en (accessed on 10 October 2024).
- ISO 21527-1; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. International Organization for Standardization: Geneva, Switzerland, 2008. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:21527:-1:ed-1:v1:en (accessed on 10 October 2024).
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bödeker, I.T.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P.; Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 2018, 34, 2292–2294. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T.; Müller, K.; Horvát, S.; Traag, V.; Zanini, F.; Noom, D. igraph for R: R Interface of the igraph Library for Graph Theory and Network Analysis; Zenodo: Genève, Switzerland, 2023; Available online: https://CRAN.R-project.org/package=igraph (accessed on 30 March 2023). [CrossRef]
- Horie, Y.; Watanabe, K. Effect of various kinds of dietary protein and supplementation with limiting amino acids on growth, haemolymph components and uric acid excretion in the silkworm, Bombyx mori. J. Insect Physiol. 1983, 29, 187–199. [Google Scholar] [CrossRef]
- Oonincx, D.; Finke, M. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Shelomi, M.; Wu, M.-K.; Chen, S.-M.; Huang, J.-J.; Burke, C.G. Microbes associated with black soldier fly (Diptera: Stratiomiidae) degradation of food waste. Environ. Entomol. 2020, 49, 405–411. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Cao, Q.; Liu, C.; Qin, Y.; Wang, T.; Wang, C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. J. Environ. Manag. 2024, 370, 123046. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Ge, C.; Yao, H. Identification of functional microflora underlying the biodegradation of sulfadiazine-contaminated substrates by Hermetia illucens. J. Hazard. Mater. 2024, 463, 132892. [Google Scholar] [CrossRef]
- Osimani, A.; Ferrocino, I.; Corvaglia, M.R.; Roncolini, A.; Milanović, V.; Garofalo, C.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Jamshidi, E. Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae. Food Res. Int. 2021, 140, 110028. [Google Scholar] [CrossRef]
Variant | MC [%] | aw |
---|---|---|
FD | 70.07 ± 1.18 | 0.818 ± 0.005 |
CS-C | 69.87 ± 2.20 | 0.874 ± 0.010 |
OS-T | 73.69 ± 1.02 | 0.811 ± 0.005 |
Variant | BE [%] | BER [%] | WRR [%] | DMR [%] |
---|---|---|---|---|
FD | 27.4 ± 2.8 a | 33.6 ± 1.8 a | 81.3 ± 4.4 a | 66.0 ± 1.5 b |
CS-C | 30.2 ± 2.8 a | 33.2 ± 1.8 a | 91.0 ± 5.5 b | 66.5 ± 1.7 b |
OS-T | 23.5 ± 5.0 a | 30.1 ± 3.4 a | 77.6 ± 7.5 a | 57.4 ± 1.5 a |
Variant | FW [mg/1 larva] | DW [mg/1 larva] | DM [%] | AC * [%] | PC * [%] | FC * [%] |
---|---|---|---|---|---|---|
IL | 31.3 ± 1.7 a | 5.92 ± 0.32 a | 18.94 ± 0.31 a | 6.97 ± 0.2 a | 37.5 ± 0.19 d | 25.1 ± 0.13 a |
FD | 100.0 ± 8.1 b | 35.11 ± 2.97 c | 35.1 ± 0.29 d | 7.02 ± 0.13 b | 35.5 ± 0.68 b | 25.81 ± 0.18 b |
CS-C | 115.3 ± 7.4 c | 38.34 ± 2.99 c | 33.25 ± 1.01 c | 6.58 ± 0.11 b | 36.83 ± 0.22 c | 26.83 ± 0.12 c |
OS-T | 89.5 ± 12.5 b | 27.94 ± 4.66 b | 31.14 ± 0.84 b | 7.44 ± 0.37 c | 34.71 ± 0.43 a | 34.02 ± 0.12 d |
Variant | TAC | ABE | EB | MFF | Y |
---|---|---|---|---|---|
IL | 6.76 ± 0.41 a | 5.54 ± 1.03 a | 5.66 ± 0.26 a | 3.64 ± 0.07 b | 3.94 ± 0.08 a |
FD | 6.74 ± 0.21 a | 4.93 ± 0.10 a | 6.94 ± 0.38 b | 1.27 ± 0.38 a | 5.78 ± 0.23 c |
CS-C | 6.70 ± 0.20 a | 5.16 ± 0.08 a | 6.92 ± 0.57 b | 1.40 ± 0.49 a | 4.46 ± 0.56 a |
OS-T | 7.28 ± 0.06 b | 5.83 ± 0.30 a | 7.66 ± 0.23 c | 5.33 ± 0.42 c | 5.05 ± 0.36 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mašková, Z.; Medo, J.; Kolesár, E.; Tančinová, D.; Ivanišová, E.; Urminská, D.; Hleba, L.; Urminská, J.; Mrvová, M.; Barboráková, Z. Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae. Insects 2025, 16, 87. https://doi.org/10.3390/insects16010087
Mašková Z, Medo J, Kolesár E, Tančinová D, Ivanišová E, Urminská D, Hleba L, Urminská J, Mrvová M, Barboráková Z. Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae. Insects. 2025; 16(1):87. https://doi.org/10.3390/insects16010087
Chicago/Turabian StyleMašková, Zuzana, Juraj Medo, Eduard Kolesár, Dana Tančinová, Eva Ivanišová, Dana Urminská, Lukáš Hleba, Jana Urminská, Monika Mrvová, and Zuzana Barboráková. 2025. "Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae" Insects 16, no. 1: 87. https://doi.org/10.3390/insects16010087
APA StyleMašková, Z., Medo, J., Kolesár, E., Tančinová, D., Ivanišová, E., Urminská, D., Hleba, L., Urminská, J., Mrvová, M., & Barboráková, Z. (2025). Hermetia illucens in the Process of Kitchen Waste Biodegradation: The Effect of Different Approaches to Waste Storage on the Microbiological Profile and Nutritional Parameters of the Larvae. Insects, 16(1), 87. https://doi.org/10.3390/insects16010087