Cost-Effective Monitoring of Spruce Budworm Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Data
2.2. Statistical Analyses
3. Results
3.1. General Trends
3.2. Visual Summary of Data
- (1)
- The early sampling interval included a vast majority (75.6%) of sites with low L2i (2730 of 3613 observations with L2i < 6.5, or TFPS/3); the proportion of ‘low density’ sites declined to 50.6% (1254 of 2478 observations) in late sampling period;
- (2)
- The proportion of sites within 15 km to defoliation increased from 32.9% to 56.1% between sampling intervals;
- (3)
- Consistent with statistical analyses in Table S1, P (L2i+1 > TFPS) increased with both L2ci and −dci, with relatively ‘smooth’ transitions across two-dimensional classes;
- (4)
- Transition to L2i+1 > TFPS as a function of L2i/di did not vastly differ between sampling periods, as suggested by similar color patterns in right/left plots of Figure 2.
3.3. Temporal Variation in Larval Density Relative to Distance to Aerial Defoliation
- (1)
- Monotonic decline in larval abundance with increasing distance to defoliation (parameters θ and ϕ in Equations (4) and (5));
- (2)
- High larval abundance (consistently above or near TFPS) < 15 km from defoliation, combined with weak (inconsistent) year effect;
- (3)
- Low larval abundance > 15 km from defoliation, generally combined with statistically significant increment over time (parameters θi and ϕi in Equations (4) and (5)).
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.W. Tortricidae (Lepidoptera). In World Catalogue of Insects; Apollo: New York, NY, USA, 2005; Volume 5, pp. 1–741. [Google Scholar]
- Gilligan, T.; Epstein, M. Tortricids of Agricultural Importance. Available online: http://idtools.org/id/leps/tortai/information.html (accessed on 5 January 2025).
- Gilligan, T.M.; Brown, J.W.; Baixeras, J. Immigrant Tortricidae: Holarctic versus introduced species in North America. Insects 2020, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Lucchi, A.; Gianfranco, A.; Bagnoli, B.; Botton, M.; Campos-Herrera, R.; Carlos, C.; Daugherty, M.P.; Gemeno, C.; Harari, A.R.; et al. European grapevine moth, Lobesia botrana. Part 1: Biology and Ecology. Entomol. Gen. 2023, 43, 261–280. [Google Scholar] [CrossRef]
- Pajač, I.; Pejić, I.; Barić, B. Codling moth, Cydia pomonella (Lepidoptera: Tortricidae)—Major pest in apple production: An overview of its biology, resistance, genetic structure and control strategies. Agric. Conspec. Sci. 2011, 76, 87–92. [Google Scholar]
- Balaško, M.K.; Bažok, R.; Mikac, K.M.; Lemic, D.; Živković, I.P. Pest management challenges and control practices in codling moth: A review. Insects 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.J. Bionomics of the apple-feeding Tortricidae. Annu. Rev. Entomol. 1973, 18, 73–96. [Google Scholar] [CrossRef]
- Suckling, D.M.; Brockerhoff, E.G. Invasion, biology, ecology, and management of the light brown apple moth (Tortricidae). Annu. Rev. Entomol. 2010, 55, 285–306. [Google Scholar] [CrossRef]
- Klem, C.C.; Zaspel, J. Pest injury guilds, Lepidoptera, and placing fruit-piercing moths in context: A review. Ann. Entomol. Soc. Am. 2019, 112, 421–432. [Google Scholar] [CrossRef]
- Lumley, L.M.; Sperling, F.A.H. Utility of microsatellites and mitochondrial DNA for species delimitation in the spruce budworm (Chorisoneura fumiferana) species complex (Lepidoptera: Tortricidae). Mol. Phylogenet. Evol. 2011, 58, 232–243. [Google Scholar] [CrossRef] [PubMed]
- French, R.L.K.; Lebunasin, P.N.A.; Brunet, B.M.T.; Lumley, L.M.; Cusson, M.; Levesque, R.; Sperling, F.A.H. Reuse of voucher specimens provides insight into the genomic associations and taxonomic value of wing colour and genitalic differences in a pest group (Lepidoptera: Tortricidae: Choristoneura). Syst. Entomol. 2020, 45, 583–593. [Google Scholar] [CrossRef]
- Hoffman, C.J.; Dennehy, T.J.; Nyrop, J.P. Phenology, monitoring, and control decision components of the grape berry moth (Lepidoptera: Tortricidae) risk assessment program in New York. J. Econ. Entomol. 1992, 85, 2218–2227. [Google Scholar] [CrossRef]
- Hayashida, R.; Hoback, W.W.; Dourado, P.M.; Bueno, A.F. Re-evaluation of the economic threshold for Crocidosema aporema injury to indeterminate Bt soybean cultivars. Agron. J. 2023, 115, 1972–1980. [Google Scholar] [CrossRef]
- Bouchard, M.; Régnière, J.; Therrien, P. Bottom-1up factors contribute to large-scale synchrony in spruce budworm populations. Can. J. For. Res. 2018, 48, 277–284. [Google Scholar] [CrossRef]
- Lumley, L.M.; Pouliot, E.; Laroche, J.; Boyle, B.; Brunet, B.M.; Levesque, R.C.; Sperling, F.A.H.; Cusson, M. Continent-wide population genomic structure and phylogeography of North America’s most destructive conifer defoliator, the spruce budworm (Choristoneura fumiferana). Ecol. Evol. 2020, 10, 914–927. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Rahimzadeh-Bajgiran, P.; Weiskittel, A. Assessing spatial and temporal dynamics of a spruce budworm outbreak across the complex forested landscape of Maine, USA. Ann. For. Sci. 2021, 78, 33. [Google Scholar] [CrossRef]
- Houndode, J.; Krause, C.; Morin, H. Predicting balsam fir mortality in boreal stands affected by spruce budworm. For. Ecol. Manag. 2021, 496, 119408. [Google Scholar] [CrossRef]
- Régnière, J.; Delisle, J.; Bauce, E.; Dupont, A.; Therrien, P.; Kettela, E.; Cadogan, L.; van Frankenhuyzen, K. Understanding of spruce budworm population dynamics: Development of early intervention strategies. In Proceedings of the North American Forest Insect Work Conference, Information Report NOR-X-381; Natural Resources Canada; Canadian Forest Service: Edmonton, AB, Canada, 2001; pp. 57–68. [Google Scholar]
- Johns, R.C.; Bowden, J.J.; Carleton, D.R.; Cooke, B.J.; Edwards, S.; Emilson, E.J.S.; James, P.M.A.; Kneeshaw, D.; MacLean, D.A.; Martel, V.; et al. A conceptual framework for the spruce budworm Early Intervention Strategy: Can outbreaks be stopped? Insects 2019, 10, 910. [Google Scholar] [CrossRef]
- Régnière, J.; Cooke, B.J.; Béchard, A.; Dupont, A.; Therrien, P. Dynamics and management of rising outbreak spruce budworm populations. Forests 2019, 10, 748. [Google Scholar] [CrossRef]
- Rhainds, M.; Therrien, P.; Morneau, L.; Lecclerc, G. Bivariate pheromone-based monitoring of spruce budworm larvae. J. Econ. Entomol. 2018, 111, 272–282. [Google Scholar] [CrossRef]
- Rhainds, M.; Therrien, P.; Morneau, L. Pheromone-based monitoring of spruce budworm (Lepidoptera: Tortricidae) larvae in relation to trap position. J. Econ. Entomol. 2016, 109, 717–723. [Google Scholar] [CrossRef]
- Ministère des Forêts, de la Faune et des Parcs [MFFP]. Aires Infestees Par la Tordeuse des Bourgeons de L’epinette au Quebec en 2023. Available online: http://mffp.gouv.qc.ca/nos-publications/aires-infestees-tordeuse-bourgeons-epinette-quebec-2023 (accessed on 16 June 2023).
- Bauce, É.; Carisey, N.; Dupont, A.; Frankenhuyzen, K.V. Bacillus thuringiensis subsp. kurstaki aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). J. Econ. Entomol. 2004, 97, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Fuentealba, A.; Dupont, A.; Hébert, C.; Berthiaume, R.; Quezada-García, R.; Bauce, É. Comparing the efficacy of various aerial spraying scenarios using Bacillus thuringiensis to protect trees from spruce budworm defoliation. For. Ecol. Manag. 2019, 432, 1013–1021. [Google Scholar] [CrossRef]
- Fuentealba, A.; Dupont, A.; Quezada-García, R.; Bauce, E. Efficacy of insecticide aerial spraying programs to reduce tree mortality during a spruce budworm outbreak (1967–1992) in the province of Quebec. Agric. For. Entomol. 2022, 24, 586–599. [Google Scholar] [CrossRef]
- Westwood, R.; Saunders, D.; Westwood, A.R.; Holliday, N.J. Effects of tebufenozide on the assemblage of moths (Lepidoptera) in an operational spruce budworm (Lepidoptera: Tortricidae) suppression program. Can. Entomol. 2019, 151, 651–676. [Google Scholar] [CrossRef]
- Glaus, V.; Nisole, A.; Edwards, S.; Bélanger, S.; Johns, R.C.; Djoumad, A.; Cusson, M.; Fournier, V.; Martel, V. Nontarget impacts of insecticide-based population control of eastern spruce budworm (Lepidoptera: Tortricidae) on nontarget caterpillar communities and parasitism. Can. Entomol. 2023, 155, e8. [Google Scholar] [CrossRef]
- Fuentealba, A.; Pelletier-Beaulieu, E.; Dupont, A.; Hébert, C.; Berthiaume, R.; Bauce, E. Optimizing Bacillus thurigiensis (Btk) aerial spray prescriptions in mixed balsam fir—White spruce stands against the eastern spruce budworm. Forests 2023, 14, 1289. [Google Scholar] [CrossRef]
- Rhainds, M. Mass trapping Lepidopteran pests with light traps, with focus on tortricid forest pests: What if? Insects 2024, 15, 267. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, H.K.; Kidd, K.A.; Emilson, E.J.S.; Stastny, M.; Venier, L.; Kielstra, B.W.; McCarter, C.P.R. Increasing spruce budworm defoliation increases catchment discharge in conifer forests. Sci. Total Environ. 2024, 912, 168561. [Google Scholar] [CrossRef] [PubMed]
- Ju, K.; Kidd, K.A.; Stastny, M.; Gray, M.A.; Venier, L.; Emilson, E.J.S. Effects of spruce budworm defoliation on in-stream algal production and carbon use by food webs. Can. J. Fish. Aquat. Sci. 2024, 81, 731–746. [Google Scholar] [CrossRef]
- Rhainds, M.; DeMerchant, I.; Therrien, P. Derivation of pheromone-based larval thresholds in spruce budworm accounting for distance to defoliated forest stands. J. Econ. Entomol. 2021, 114, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.; Maclean, D. Evaluation of branch sampling, ocular assessments, and aerial surveys for estimating spruce budworm defoliation. Can. J. For. Res. 2024, 54, 725–740. [Google Scholar] [CrossRef]
- Simmons, G.A.; Elliott, N.C. Use of moths caught in light traps for predicting outbreaks of the spruce budworm (Lepidoptera: Tortricidae). J. Econ. Entomol. 1985, 78, 362–365. [Google Scholar] [CrossRef]
- Rhainds, M.; Lavigne, D.; Boulanger, Y.; DeMerchant, I.; Delisle, J.; Motty, J.; Rideout, T.; Labrecque, A. I know it when I see it: Incidence, timing and intensity of immigration in spruce budworm. Agric. For. Entomol. 2021, 24, 152–166. [Google Scholar] [CrossRef]
- Housewarth, M.W.; Jennings, D.T.; Sanders, C.J. Variables associated with pheromone traps for monitoring spruce budworm populations (Lepidoptera: Tortricidae). Can. Entomol. 1981, 113, 527–537. [Google Scholar] [CrossRef]
- Bergh, J.C.; Eveleigh, E.S.; Seabrook, W.D. The mating status of field-collected male spruce budworm, Choristoneura fumiferana (Clem.), in relation to trap location, sampling method, sampling date, and adult emergence. Can. Entomol. 1988, 120, 821–830. [Google Scholar] [CrossRef]
- Régnière, J. An oviposition model for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Entomol. 1983, 115, 1371–1382. [Google Scholar] [CrossRef]
- Royama, T. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr. 1984, 54, 429–462. [Google Scholar] [CrossRef]
- Djoumad, A.; Tanguay, P.; Régnière, J.; Trudel, G.; Morrison, A.; Fournier, C.; Carleton, D.; Nisole, A.; Stewart, D.; Cusson, M. Development of a qPCR-based method for counting overwintering spruce budworm (Choristoneura fumiferana) larvae collected during fall surveys and for assessing their natural enemy load: A proof-of-concept study. Pest Manag. Sci. 2022, 78, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Régnière, J.; Johns, R.C.; Edwards, S.; Owens, E.; Dupont, A. Overwintering spruce budworm population density as predictor of following-year larval density and defoliation on balsam fir. For. Ecol. Manag. 2023, 546, 121380. [Google Scholar] [CrossRef]
- Itter, M.S.; D’Orangeville, L.; Dawson, A.; Kneeshaw, D.; Duchesne, L.; Finley, A.O. Boreal tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no negative response to their interaction. J. Ecol. 2019, 107, 1288–1301. [Google Scholar] [CrossRef]
- Robert, L.E.; Sturtevant, B.R.; Cooke, B.J.; James, P.M.A.; Fortin, M.J.; Townsend, P.A.; Wolter, P.T.; Kneeshaw, D. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography 2018, 41, 1556–1571. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Achtemeier, G.L.; Charney, J.J.; Anderson, D.P.; Cooke, B.J.; Townsend, P.A. Long-distance dispersal of spruce budworm (Choristoneura fumiferana Clemens) in Minnesota (USA) and Ontario (Canada) via the atmospheric pathway. Agric. For. Meteorol. 2013, 168, 186–200. [Google Scholar] [CrossRef]
- Legault, S.; James, P.M.A. Parasitism rates of spruce budworm larvae: Testing the enemy hypothesis along a gradient of forest diversity measured at different spatial scales. Environ. Entomol. 2018, 47, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Greenbank, D.O.; Schaefer, G.W.; Rainey, A.C. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: New understandings from canopy observations, radar, and aircraft. Mem. Entomol. Soc. Can. 1980, 110, 1–49. [Google Scholar] [CrossRef]
- McNeil, J.N.; Cusson, M.; Delisle, J.; Orchard, I.; Tobe, I. Insect Migrations: Tracking Resources Through Space and Time; Drake, V.A., Gatehouse, A.G., Eds.; Cambridge University Press: New York, NY, USA, 1995; pp. 279–302. [Google Scholar]
- Régnière, J.; Nealis, V. Density-dependence of egg recruitment and moth dispersal in spruce budworm. Forests 2019, 10, 706. [Google Scholar] [CrossRef]
- Rhainds, M. Variation in wing load of female spruce budworms (Lepidoptera: Tortricidae) during the course of an outbreak: Evidence for phenotypic response to habitat deterioration in collapsing populations. Environ. Entomol. 2020, 49, 238–245. [Google Scholar] [CrossRef]
- MacLean, D.A.; Amirault, P.; Amos-Binks, L.; Carleton, D.; Hennigar, C.; Johns, R.; Régnière, J. Positive results of an Early Intervention Strategy to suppress a spruce budworm outbreak after five years of trials. Forests 2019, 10, 448. [Google Scholar] [CrossRef]
- McNie, P.; Kneeshaw, D.; Filotas, E. Increased unpredictability in spruce budworm outbreaks following habitat loss and landscape fragmentation. Ecol. Model. 2024, 491, 110675. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Gray, T.G. Pest management of Douglas fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae): Monitoring endemic populations with pheromone traps to detect incipient outbreaks. Can. Entomol. 1985, 117, 839–848. [Google Scholar] [CrossRef]
- Harrison, S. Persistent, localized outbreaks in the western tussock moth Orgyia vetusta: The roles of resource quality, predation and poor dispersal. Ecol. Entomol. 1997, 22, 158–166. [Google Scholar] [CrossRef]
- Rhainds, M.; Gries, G.; Saleh, A. Density and pupation site of apterous female bagworms, Metisa plana (Lepidoptera: Psychidae), influence the distribution of emergent larvae. Can. Entomol. 1998, 130, 603–613. [Google Scholar] [CrossRef]
- Tobin, P.C.; Whitmire, S.L. Population ecology spread of gypsy moth (Lepidoptera: Lymantriidae) and its relationship to defoliation. Environ. Entomol. 2005, 34, 1448–1455. [Google Scholar] [CrossRef]
- Norghauer, J.M.; Grogan, J.; Malcolm, J.R.; Felfili, J.M. Long-distance dispersal helps germinating mahogany seedlings escape defoliation by a generalist specialist caterpillar. Oecologia 2010, 162, 405–412. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhainds, M.; Therrien, P. Cost-Effective Monitoring of Spruce Budworm Larvae. Insects 2025, 16, 108. https://doi.org/10.3390/insects16020108
Rhainds M, Therrien P. Cost-Effective Monitoring of Spruce Budworm Larvae. Insects. 2025; 16(2):108. https://doi.org/10.3390/insects16020108
Chicago/Turabian StyleRhainds, Marc, and Pierre Therrien. 2025. "Cost-Effective Monitoring of Spruce Budworm Larvae" Insects 16, no. 2: 108. https://doi.org/10.3390/insects16020108
APA StyleRhainds, M., & Therrien, P. (2025). Cost-Effective Monitoring of Spruce Budworm Larvae. Insects, 16(2), 108. https://doi.org/10.3390/insects16020108