Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. The Effect of UV Radiation on Biological Parameters of T. absoluta
2.3. The Effect of UV Radiation on Antioxidant Enzymes of T. absoluta
2.4. Statistical Analysis
3. Results
3.1. The Impact of UV Radiation on Biological Parameters of T. absoluta
3.2. The Effect of UV Radiation on the Antioxidant Enzyme of T. absoluta
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacKie, R.M. Effects of ultraviolet radiation on human health. Radiat. Prot. Dosim. 2000, 91, 15–18. [Google Scholar] [CrossRef]
- Schauen, M.; Hornig-Do, H.T.; Schomberg, S.; Herrmann, G.; Wiesner, R.J. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radic. Biol. Med. 2007, 42, 499–509. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Forges, M.; Vàsquez, H.; Charles, F.; Sari, D.C.; Urban, L.; Lizzi, Y.; Bardin, M.; Aarrouf, J. Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea. Sci. Hortic. 2018, 240, 603–613. [Google Scholar] [CrossRef]
- Rünger, T.M.; Ulrike, P.K. Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatol. Photoimmunol. Photomed. 2008, 24, 2–10. [Google Scholar] [CrossRef]
- Williamson, C.E.; Neale, P.J.; Hylander, S.; Rose, K.C.; Figueroa, F.L.; Robinson, S.A.; Worrest, R.C. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 2019, 18, 717–746. [Google Scholar] [CrossRef]
- Kim, M.J.; Johnson, W.A. ROS-mediated activation of Drosophila larval nociceptor neurons by UV-C radiation. BMC Neurosci. 2014, 15, 14–27. [Google Scholar] [CrossRef]
- Ali, A.; Rashid, M.A.; Huang, Q.Y.; Lei, C.L. Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2017, 24, 8392–8398. [Google Scholar] [CrossRef]
- Li, L.J.; Liu, X.M.; Guo, Y.P.; Enbo, M. Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environ. Toxicol. Pharmacol. 2005, 20, 412–416. [Google Scholar]
- Gonzalez, M.D.H.; Paz, M.L.; Leoni, J. Sunlight effects on immune system: Is there something else in addition to UV-induced immunosuppression? Biomed Res. Int. 2016, 2016, 1934518. [Google Scholar]
- Dong, W.; Hou, D.; Hou, Q.; Jin, H.; Li, F.; Wu, S. Effects of ultraviolet light stress on protective and detoxification enzymes in insects. Trop. Plants. 2024, 3, e007. [Google Scholar] [CrossRef]
- Tungjitwitayakul, J.; Suppasat, T.; Tatun, N. Adverse effects of UV-C irradiation on the morphology of reproductive organs, fecundity, and fertility of the red flour beetle, Tribolium castaneum Herbst (Coleoptera; Tenebrionidae). Polish J. Entomol. 2022, 91, 56–67. [Google Scholar] [CrossRef]
- Anttila, U.; Julkunen-Tiitto, R.; Rousi, M.; Yang, S.; Rantala, M.J.; Ruuhola, T. Effects of elevated ultraviolet-B radiation on a plant-herbivore interaction. Oecologia 2010, 164, 163–175. [Google Scholar] [CrossRef]
- Parajuli, S.; Beattie, G.A.C.; Holford, P.; Yang, C.; Cen, Y. Susceptibility of Diaphorina citri to irradiation with UV-A and UV-B and the applicability of the bunsen-roscoe reciprocity law. Insects 2023, 14, 445–463. [Google Scholar] [CrossRef]
- Holford, P.; Parajuli, S.; Beattie, G.A.C.; Cen, Y. Arthropods and ultraviolet radiation: Survival, growth and development. Ecol. Entomol. 2024, 49, 451–462. [Google Scholar] [CrossRef]
- Cui, H.; Zeng, Y.; Reddy, G.V.; Gao, F.; Li, Z.; Zhao, Z. UV radiation increases mortality and decreases the antioxidant activity in a tephritid fly. Food Energy Secur. 2021, 10, e297. [Google Scholar] [CrossRef]
- Khan, M.M.; Fan, Z.Y.; Sabir, I.A.; Hafeez, M.; Wen, S.; Wu, J.H.; Qiu, B.L. Physiological and molecular response modifications by ultraviolet-C radiation in Plutella xylostella and its compatibility with Cordyceps fumosorosea. Int. J. Mol. Sci. 2022, 23, 9800. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Yang, G.; Kuang, J.K.; Feng, C.H.; Luo, H.H.; Yang, Q.F.; Jiang, C.X.; Wang, H.J. Effects of temperature stress and ultraviolet radiation stress on antioxidant systems of Locusta migratoria tibetensis Chen. Acta Ecol. Sin. 2012, 32, 3189–3197. [Google Scholar]
- Meng, J.Y.; Zhang, C.Y.; Zhu, F.; Wang, X.P.; Lei, C.L. Ultraviolet light induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009, 55, 588–592. [Google Scholar] [CrossRef]
- Missirlis, F.; Phillips, J.P.; Jäckle, H. Cooperative action of antioxidant defense systems in Drosophila. Curr. Biol. 2001, 11, 1272–1277. [Google Scholar] [CrossRef]
- Biondi, A.; Guedes, R.N.C.; Wan, F.H.; Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Rostami, E.; Madadi, H.; Abbasipour, H.; Fu, J.; Cuthbertson, A.G.S. Assessment of Tuta absoluta yield loss in Iranian tomato crops. J. Asia-Pac. Entomol. 2021, 24, 1017–1023. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Biondi, A. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Roditakis, E.; Campos, M.R.; Haddi, K.; Bielza, P.; Siqueira, H.A.A.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Qu, C.; Chen, C.L.; Li, Y.Y.; Yin, Y.Q.; Feng, Y.F.; Wang, R.; Luo, C. Lethal, sublethal and transgenerational effects of broflanilide on Tuta absoluta. Entomol. Gen. 2023, 44, 385–393. [Google Scholar] [CrossRef]
- Zhang, G.F.; Wang, Y.S.; Gao, Y.H.; Liu, W.X.; Zhang, R.; FU, W.J.; Wan, F.H. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China. J. Integr. Agr. 2020, 19, 1912–1917. [Google Scholar] [CrossRef]
- Paul, N. Ecological roles of solar UV radiation: Towards an integrated approach. Trends Ecol. Evol. 2003, 18, 48–55. [Google Scholar] [CrossRef]
- Douki, T.; von Koschembahr, A.; Cadet, J. Insight in DNA repair of UV-induced pyrimidine dimers by chromatographic methods. Photochem. Photobiol. 2017, 93, 207–215. [Google Scholar] [CrossRef]
- Tariq, K.; Noor, M.; Saeed, S.; Zhang, H. The effect of ultraviolet-a radiation exposure on the reproductive ability, longevity, and development of the Dialeurodes citri (Homoptera: Aleyrodidae) F1 generation. Environ. Entomol. 2015, 44, 1614–1618. [Google Scholar] [CrossRef]
- Tuncbilek, A.S.; Ercan, S.F.; Canpolat, U. Effect of ionizing (gamma) and non-ionizing (UV) radiation on the development of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae). Arch. Biol. Sci. 2012, 64, 287–295. [Google Scholar] [CrossRef]
- Collins, D.A.; Kitchingman, L. The effect of ultraviolet C radiation on stored-product pests. Julius-Kühn-Archiv. 2012, 425, 632–636. [Google Scholar]
- Zhang, C.Y.; Meng, J.Y.; Wang, X.P.; Zhu, F.; Lei, C.L. Effects of UV-A exposures on longevity and reproduction in Helicoverpa armigera, and on the development of its F1 generation. Insect Sci. 2011, 18, 697–702. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhao, H.Y.; Thieme, T. Probing behaviors of Sitobion avenae (Hemiptera: Aphididae) on enhanced UV-B irradiated plants. Arch. Biol. Sci. 2013, 65, 247–254. [Google Scholar]
- Jia, F.X.; Dou, W.; Hu, F.; Wang, J.J. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Fla. Entomol. 2011, 94, 956–963. [Google Scholar] [CrossRef]
- Heck, D.E.; Vetrano, A.M.; Mariano, T.M.; Laskin, J.D. UV-B light stimulates production of reactive oxygen species: Unexpected role for catalase. J. Biol. Chem. 2003, 278, 22432–22436. [Google Scholar] [CrossRef]
- Polte, T.; Tyrrell, R.M. Involvement of lipid peroxidation and organic peroxides in UV-A-induced matrix metalloproteinase-1 expression. Free Radical Biol. Med. 2004, 36, 1566–1574. [Google Scholar] [CrossRef]
- Ghorbal, S.K.B.; Maalej, L.; Chourabi, K.; Khefacha, S.; Ouzari, H.I.; Chatti, A. Antioxidant defense mechanisms in Pseudomonas aeruginosa: Role of iron-cofactor superoxide dismutase in response to UV-C radiations. Curr. Microbiol. 2016, 73, 159–164. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhao, H.Y.; Thieme, T. The effects of enhanced ultraviolet-B radiation on the biology of green and brown morphs of Sitobion avenae (Hemiptera: Aphididae). Environ. Entomol. 2013, 42, 578–585. [Google Scholar] [CrossRef]
- Osakabe, M. Biological impact of ultraviolet-B radiation on spider mites and its application in integrated pest management. Appl. Entomol. Zool. 2021, 56, 139–155. [Google Scholar] [CrossRef]
- Tian, C.B.; Li, Y.Y.; Wang, X.; Fan, W.H.; Wang, G.; Liang, J.Y.; Wang, Z.Y.; Liu, H. Effects of UV-B radiation on the survival, egg hatchability and transcript expression of antioxidant enzymes in a high-temperature adapted strain of Neoseiulus barkeri. Exp. Appl. Acarol. 2019, 77, 527–543. [Google Scholar] [CrossRef]
- Yasur, J.; Rani, P.U. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 2015, 124, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Free radical theory of aging. Mutat. Rres. 1992, 275, 257–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Luo, W.; He, W.; Huang, X.; Song, S.; Mao, L.; Peng, H.; Xu, J. Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick). Insects 2025, 16, 109. https://doi.org/10.3390/insects16020109
Zhou J, Luo W, He W, Huang X, Song S, Mao L, Peng H, Xu J. Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick). Insects. 2025; 16(2):109. https://doi.org/10.3390/insects16020109
Chicago/Turabian StyleZhou, Junhui, Wenfang Luo, Wei He, Xin Huang, Suqin Song, Liang Mao, Huan Peng, and Jianjun Xu. 2025. "Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick)" Insects 16, no. 2: 109. https://doi.org/10.3390/insects16020109
APA StyleZhou, J., Luo, W., He, W., Huang, X., Song, S., Mao, L., Peng, H., & Xu, J. (2025). Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick). Insects, 16(2), 109. https://doi.org/10.3390/insects16020109