Evaluation of the Control Efficacy of Bt Maize Expressing Cry1Ab and Vip3Aa Proteins Against Agrotis ypsilon (Rottemberg)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. ELISA Determination of the Contents of Bt Protein in Different Tissues of Bt Maize Seedlings
2.3. Determination of Toxicity of Bt Protein Expressed by Bt Maize to Larvae
2.4. Determination of Mortality of Larvae Feeding on Bt Maize
2.5. Determination of Feeding Preference of Larvae for Bt Maize and Non-Bt Maize
2.6. Determination of Ovipositional Preference of Moth for Bt Maize and Non-Bt Maize
2.7. Statistical Analysis
3. Results
3.1. Expression of Bt Protein in Different Tissues of Bt Maize Seedlings
3.2. Susceptibilities of A. ypsilon to Bt Protein Expressed in Bt Maize
3.3. Mortality of A. ypsilon Feeding on Bt Maize Seedlings
3.4. Feeding and Ovipositional Preference of A. ypsilon for Bt Maize and Non-Bt Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Showers, W.B. Migratory ecology of the black cutworm. Annu. Rev. Entomol. 1997, 42, 393–425. [Google Scholar] [CrossRef]
- CABI. Agrotis ipsilon (Black Cutworm); CABI Compendium: Wallingford, UK, 2022. [Google Scholar]
- Rodingpuia, C.; Lalthanzara, H. An insight into black cutworm (Agrotis ipsilon): A glimpse on globally important crop pest. Sci. Vis. 2021, 21, 36–42. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Fu, X.W.; Feng, H.Q.; Liu, Z.F.; Wu, K.M. Trans-regional migration of Agrotis ipsilon (Lepidoptera: Noctuidae) in North-East Asia. Ann. Entomol. Soc. Am. 2015, 108, 519–527. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, Y.Q.; Zhang, H.W.; Liu, J.; Jiang, Y.Y.; Wyckhuys, K.A.G.; Wu, K.M. Global warming modifies long-distance migration of an agricultural insect pest. J. Pest Sci. 2020, 93, 569–581. [Google Scholar] [CrossRef]
- Ostlie, K. Black Cutworm on Corn. Available online: https://extension.umn.edu/corn-pest-management/black-cutworm-corn#degree-days-and-black-cutworm-growth-and-development-1185511 (accessed on 25 November 2024).
- Muştu, M.; Aktürk, M.; Akkoyun, G.; Çakır, S. Life tables of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) on different cultivated plants. Phytoparasitica 2021, 49, 21–31. [Google Scholar] [CrossRef]
- Zeng, J. Evolution Trend for Population Dynamics and Damage Loss of Agrotis ipsilon (Lepidoptera: Noctuidae) in China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar]
- Xu, C.M.; Zhang, Z.Q.; Cui, K.D.; Zhao, Y.H.; Han, J.K.; Liu, F.; Mu, W. Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0156555. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhang, J.X.; Shen, H.F.; Yang, Q.Y.; Pu, X.M.; Sun, D.Y.; Ge, B.Y.; Lin, B.R. Efficacy of transplant insecticides against black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in tobacco. Crop Prot. 2023, 171, 106283. [Google Scholar] [CrossRef]
- Yu, W.L.; Du, J.H.; Hu, Y.P.; Shen, R.P.; Mu, W. Toxicity of six insecticides to black cutworm Agrotis ypsilon (Rottemberg) and safety evaluation to oil organisms. J. Plant Prot. 2012, 39, 277–282. [Google Scholar]
- Galli, M.; Feldmann, F.; Vogler, U.K.; Kogel, K.-H. Can biocontrol be the game-changer in integrated pest management? A review of definitions, methods and strategies. J. Plant Dis. Prot. 2024, 131, 265–291. [Google Scholar] [CrossRef]
- AGROPAGES. The World’s Major GM Crop Growing Countries and Their Area Changes in 2023. Available online: https://cn.agropages.com/News/NewsDetail---31111.htm (accessed on 26 November 2024).
- Deshmukh, S.; Pavithra, H.B.; Kalleshwaraswamy, C.M.; Shivanna, B.K.; Maruthi, M.S.; Mota-Sanchez, D. Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Fla. Entomol. 2020, 103, 221–227. [Google Scholar] [CrossRef]
- USEPA. Current and Previously Registered Section 3 Plant-Incorporated Protectant (PIP) Registrations. Available online: https://www.epa.gov/ingredients-used-pesticide-products/current-and-previously-registered-section-3-plant-incorporated (accessed on 26 November 2024).
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide suppression of european corn borer with Bt maize reaps savings to non-Bt maize growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Dively, G.P.; Venugopal, P.D.; Bean, D.; Whalen, J.; Holmstrom, K.; Kuhar, T.P.; Doughty, H.B.; Patton, T.; Cissel, W.; Hutchison, W.D. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl. Acad. Sci. USA 2018, 115, 3320–3325. [Google Scholar] [CrossRef] [PubMed]
- Eizaguirre, M.; Madeira, F.; Lopez, C. Effects of Bt maize on non-target Lepidopteran pests. IOBC/WPRS Bulletin 2010, 52, 49–55. [Google Scholar]
- Chakroun, M.; Bel, Y.; Caccia, S.; Abdelkefi-Mesrati, L.; Escriche, B.; Ferré, J. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J. Invertebr. Pathol. 2012, 110, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Y.; Wu, S.W.; Yang, Y.H.; Wu, Y.D. Baseline susceptibility of field populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa toxin and lack of cross-resistance between Vip3Aa and Cry toxins. Toxins 2017, 9, 127. [Google Scholar] [CrossRef]
- Yan, X.R.; Lu, J.J.; Ren, M.F.; He, Y.; Wang, Y.Q.; Wang, Z.Y.; He, K.L. Insecticidal activity of 11 Bt toxins and 3 transgenic maize events expressing Vip3Aa19 to black cutworm, Agrotis ipsilon (Hufnagel). Insects 2020, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhang, Y.J.; Yuan, H.C.; Cao, G.C.; Lu, Y.H.; Guo, Y.Y. Insecticidal activity of Cry2Ab proteins to Agrotis ypsilon (Rottemberg) and induced protease activities changes in the larvae. Acta Phytophylacica Sin. 2009, 36, 16–20. [Google Scholar]
- Binning, R.R.; Coats, J.; Kong, X.X.; Hellmich, R.L. Susceptibility to Bt proteins is not required for Agrotis ipsilon aversion to Bt maize. Pest Manag. Sci. 2015, 71, 601–606. [Google Scholar] [CrossRef] [PubMed]
- AGROPAGES. China Opens a New Chapter of GM Crop Production. Available online: https://news.agropages.com/News/NewsDetail---50491.htm (accessed on 26 November 2024).
- Zhang, D.D.; Wu, K.M. The bioassay of Chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa) maize against the fall armyworm. Spodoptera frugiperda Plant Prot 2019, 45, 54–60. [Google Scholar]
- Zhang, Z.H.; Yang, X.M.; Wang, W.H.; Wu, K.M. Insecticidal effects of transgenic maize Bt-Cry1Ab, Bt-Vip3Aa, and Bt-Cry1Ab+Vip3Aa against the oriental armyworm, Mythimna separata (Walker) in Southwest China. Toxins 2024, 16, 134. [Google Scholar] [CrossRef]
- Li, H.T.; Wang, W.H.; Yang, X.M.; Kang, G.D.; Zhang, Z.H.; Wu, K.M. Toxic effects of Bt-(Cry1Ab+Vip3Aa) maize (“DBN3601T’’ event) on the Asian corn borer Ostrinia furnacalis (Guenée) in Southwestern China. Agronomy 2024, 14, 1906. [Google Scholar] [CrossRef]
- Chang, X.; Wang, W.; Shen, Z.C.; Ye, G.Y. Evaluation of transgenic cry1Ab/cry2Aj and cry1Ab/vip3DA maize events for their resistance to Helicoverpa armigera, Spodoptera exigua and Prodenia litura. J. Plant Prot. 2016, 43, 951–957. [Google Scholar]
- Zhang, Y.J.; Lu, Q.; Gu, S.H.; Lu, Y.H.; Wu, K.M. An Artificial Diet for Agrotis ypsilon Larvae and its Preparation Method and Application. CN101584411B, 25 April 2012. [Google Scholar]
- Liang, J.G.; Zhang, X.D.; Bi, Y.Z.; Wang, H.Q.; Zhang, X.J. Development status and prospect of genetically modified insect-resistant maize. China Biotech. 2021, 41, 98–104. [Google Scholar]
- MARA. Agricultural GMO Safety Certificate Approval List (3) in 2021. Available online: http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/202112/P020220119657613017948.pdf (accessed on 20 January 2025).
- Wang, W.H.; Zhang, D.D.; Zhao, S.Y.; Wu, K.M. Susceptibilities of the invasive fall armyworm (Spodoptera frugiperda) to the insecticidal proteins of Bt maize in China. Toxins 2022, 14, 507. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.Q.; Lei, W.B.; Wen, L.Z.; Hou, M.L. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS ONE 2015, 10, e0120557. [Google Scholar] [CrossRef]
- Rule, D.M.; Nolting, S.P.; Prasifka, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.F.; Siebert, M.W.; Hendrix, W.H. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and Cry2Ab2 expressed in SmartStax Corn hybrids against Lepidopteran insect pests in the Northern United States. J. Econ. Entomol. 2014, 107, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, A.J.; Reisig, D.D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 2023, 68, 31–49. [Google Scholar] [CrossRef]
- Hernández-Martínez, P.; Hernández-Rodríguez, C.S.; Rie, J.V.; Escriche, B.; Ferré, J. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against Lepidopteran corn pests. J. Invertebr. Pathol. 2013, 113, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zhang, F.; Kone, N.G.; Chen, J.H.; Zhu, F.; Han, R.C.; Lei, C.L.; Kenis, M.; Huang, L.Q.; Wang, C.Z. Identification and testing of oviposition attractant chemical compounds for Musca domestica. Sci. Rep. 2016, 6, 33017. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Luo, Z.L.; Zhao, Y.M.; Xiao, N.W. The selective feeding of cotton bollworms (Helicoverpa armigera) on transgenic and non-transgenic cotton leaves from consecutive cultivation fields. Int. J. Pest Manag. 2020, 66, 195–200. [Google Scholar] [CrossRef]
- Yun, G.L.; Deng, S.D.; Zhang, Q.W.; Xu, H.L.; Cai, Q.N. The resistance of Bt corn (MG95) to Pseudaletia separata. Entomol. Sci. 2004, 41, 422–426. [Google Scholar]
- Téllez-Rodríguez, P.; Raymond, B.; Morán-Bertot, I.; Rodríguez-Cabrera, L.; Wright, D.J.; Borroto, C.G.; Ayra-Pardo, C. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance. BMC Biol. 2014, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, M.A.; Gould, F.; Legros, M.; Yang, L.; van Loon, J.J.A.; Dicke, M. Insect oviposition behavior affects the evolution of adaptation to Bt crops: Consequences for refuge policies. Evol. Ecol. 2010, 24, 1017–1030. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Hu, X.Y.; Peng, Y.F.; Wu, K.M.; Romeis, J.; Li, Y.H. Bt rice plants may protect neighbouring non-Bt rice plants against the striped stem borer, Chilo suppressalis. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181283. [Google Scholar] [CrossRef]
- Shelton, A.M.; Hatch, S.L.; Zhao, J.Z.; Chen, M.; Earle, E.D.; Cao, J. Suppression of diamondback moth using Bt-transgenic plants as a trap crop. Crop Prot. 2008, 27, 403–409. [Google Scholar] [CrossRef]
- Reisenman, C.E.; Riffell, J.A.; Duffy, K.; Pesque, A.; Mikles, D.; Goodwin, B. Species-Specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J. Chem. Ecol. 2013, 39, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Liu, Y.; Guo, M.B.; Sun, D.D.; Zhang, M.J.; Chu, X.; Berg, B.G.; Wang, G.R. A female-specific odorant receptor mediates oviposition deterrence in the moth Helicoverpa armigera. Curr. Biol. 2024, 34, 1–11.e14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Hallerman, E.M.; Wu, K.M.; Peng, Y.F. Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annu. Rev. Entomol. 2020, 65, 273–292. [Google Scholar] [CrossRef]
- Wu, K.M.; Lu, Y.H.; Feng, H.Q.; Jiang, Y.Y.; Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 2008, 321, 1676–1678. [Google Scholar] [CrossRef] [PubMed]
- Marvier, M.; McCreedy, C.; Regetz, J.; Kareiva, P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 2007, 316, 1475–1477. [Google Scholar] [CrossRef] [PubMed]
- Wolfenbarger, L.L.; Naranjo, S.E.; Lundgren, J.G.; Bitzer, R.J.; Watrud, L.S. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS ONE 2008, 3, e2118. [Google Scholar] [CrossRef] [PubMed]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef] [PubMed]
- He, L.M.; Zhao, S.Y.; Gao, X.W.; Wu, K.M. Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China. J. Integr. Agric. 2021, 20, 804–814. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef] [PubMed]
Maize | Protein | LC50 (95% FL)/μg·g−1 | Slope ± SE | χ2 | df | p |
---|---|---|---|---|---|---|
DBN9936 | Cry1Ab | 3.44 (2.16–4.55) a | 2.14 ± 1.15 | 15.31 | 21 | 0.81 |
DBN9501 | Vip3Aa | 0.82 (0.60–1.02) b | 2.53 ± 0.22 | 8.57 | 21 | 0.99 |
DBN3601T | CrylAb+Vip3Aa | 3.39 (2.29–4.21) a | 3.31 ±1.76 | 7.82 | 21 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; He, Y.; Yu, H.; Yang, X.; Wu, K. Evaluation of the Control Efficacy of Bt Maize Expressing Cry1Ab and Vip3Aa Proteins Against Agrotis ypsilon (Rottemberg). Insects 2025, 16, 119. https://doi.org/10.3390/insects16020119
Wang W, He Y, Yu H, Yang X, Wu K. Evaluation of the Control Efficacy of Bt Maize Expressing Cry1Ab and Vip3Aa Proteins Against Agrotis ypsilon (Rottemberg). Insects. 2025; 16(2):119. https://doi.org/10.3390/insects16020119
Chicago/Turabian StyleWang, Wenhui, Yuting He, Huan Yu, Xianming Yang, and Kongming Wu. 2025. "Evaluation of the Control Efficacy of Bt Maize Expressing Cry1Ab and Vip3Aa Proteins Against Agrotis ypsilon (Rottemberg)" Insects 16, no. 2: 119. https://doi.org/10.3390/insects16020119
APA StyleWang, W., He, Y., Yu, H., Yang, X., & Wu, K. (2025). Evaluation of the Control Efficacy of Bt Maize Expressing Cry1Ab and Vip3Aa Proteins Against Agrotis ypsilon (Rottemberg). Insects, 16(2), 119. https://doi.org/10.3390/insects16020119