Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects for Testing
2.2. Bioinformatic Analysis
2.3. RNA Extraction and RT-qPCR
2.4. Analysis of Developmental and Tissue-Specific Expression
2.5. RNAi
2.6. Determination of Glycogen, Trehalose, and Glucose Content
2.7. Determination of Triglyceride and Free Fatty Acid Content
2.8. Determination of Vg Protein Content (ELISA)
2.9. Data Statistics and Analysis
3. Results
3.1. Sequence and Phylogenetic Analyses of FASs in L. migratoria
3.2. Developmental and Tissue-Specific Expression of FASs in L. migratoria
3.3. Evaluation of Interference Effect of dsFAS2
3.4. Effects of FAS2 Silencing on Energy Metabolism in L. migratoria
3.5. Effects of FAS2 Silencing on Ovarian Development in L. migratoria
3.6. Effects of FAS2 Silencing on Fecundity in L. migratoria
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, L.; Li, Y.; Goto, M. Physiological and biochemical changes in summer and winter diapause and non-diapause pupae of the cabbage armyworm, Mamestra brassicae L. during long-term cold acclimation. J. Insect Physiol. 2003, 49, 1153–1159. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.Q.; Liu, W.; Zhu, F.; Lei, C.L.; Wang, X.P. Fatty acid synthase 2 contributes to diapause preparation in a beetle by regulating lipid accumulation and stress tolerance genes expression. Sci. Rep. 2017, 7, 40509. [Google Scholar] [CrossRef] [PubMed]
- Sassa, T.; Kihara, A. Metabolism of very long-chain Fatty acids: Genes and pathophysiology. Biomol. Ther. 2014, 22, 83–92. [Google Scholar] [CrossRef]
- Visser, B.; Ellers, J. Lack of lipogenesis in parasitoids: A review of physiological mechanisms and evolutionary implications. J. Insect Physiol. 2008, 54, 1315–1322. [Google Scholar] [CrossRef]
- Canavoso, L.E.; Jouni, Z.E.; Karnas, K.J.; Pennington, J.E.; Wells, M.A. Fat metabolism in insects. Annu. Rev. Nutr. 2001, 21, 23–46. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Y.; Liu, Z.; You, L.; Wu, Y.; Xu, B.; Ge, L.; Stanley, D.; Song, Q.; Wu, J. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression. J. Proteom. 2016, 130, 140–149. [Google Scholar] [CrossRef]
- Arrese, E.L.; Canavoso, L.E.; Jouni, Z.E.; Pennington, J.E.; Tsuchida, K.; Wells, M.A. Lipid storage and mobilization in insects: Current status and future directions. Insect Biochem. Mol. Biol. 2001, 31, 7–17. [Google Scholar] [CrossRef]
- Kawooya, J.K.; Law, J.H. Role of lipophorin in lipid transport to the insect egg. J. Biol. Chem. 1988, 263, 8748–8753. [Google Scholar] [CrossRef]
- Heier, C.; Kühnlein, R.P. Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2018, 210, 1163–1184. [Google Scholar] [CrossRef] [PubMed]
- Shukla, E.; Thorat, L.J.; Nath, B.B.; Gaikwad, S.M. Insect trehalase: Physiological significance and potential applications. Glycobiology 2015, 25, 357–367. [Google Scholar] [CrossRef]
- Stracke, C.; Meyer, B.H.; Hagemann, A.; Jo, E.; Lee, A.; Albers, S.V.; Cha, J.; Bräsen, C.; Siebers, B. Salt stress response of sulfolobus acidocaldarius involves complex trehalose metabolism utilizing a novel trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway. Appl. Environ. Microbiol. 2020, 86, e01565-20. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S. Treholose regulation, one aspect of metabolic homeostasis. Annu. Rev. Entomol. 1978, 23, 389–407. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, L.W.; Xing, X.R.; Xie, Y.Q.; Li, Y.J.; Liu, Z.X.; Wang, J.; Wu, F.A.; Sheng, S. Lipid dynamics, identification, and expression patterns of fatty acid synthase genes in an Endoparasitoid, Meteorus pulchricornis (Hymenoptera: Braconidae). Int. J. Mol. Sci. 2020, 21, 6228. [Google Scholar] [CrossRef] [PubMed]
- Renobales, M.D.; Woodin, T.S.; Blomquist, G.J. Drosophila melanogaster fatty acid synthetase: Characteristics and effect of protease inhibitors. Insect Biochem. 1986, 16, 887–894. [Google Scholar] [CrossRef]
- Chung, H.; Loehlin, D.W.; Dufour, H.D.; Vaccarro, K.; Millar, J.G.; Carroll, S.B. A single gene affects both ecological divergence and mate choice in Drosophila. Science 2014, 343, 1148–1151. [Google Scholar] [CrossRef] [PubMed]
- Majerowicz, D.; Calderón-Fernández, G.M.; Alves-Bezerra, M.; De Paula, I.F.; Cardoso, L.S.; Juárez, M.P.; Atella, G.C.; Gondim, K.C. Lipid metabolism in Rhodnius prolixus: Lessons from the genome. Gene 2017, 596, 27–44. [Google Scholar] [CrossRef]
- Moriconi, D.E.; Dulbecco, A.B.; Juárez, M.P.; Calderón-Fernández, G.M. A fatty acid synthase gene (FASN3) from the integument tissue of Rhodnius prolixus contributes to cuticle water loss regulation. Insect Mol. Biol. 2019, 28, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, W.; Liu, C.; Chen, L.; Xu, Y.; Xiao, H.; Liang, G. Methoprene-Tolerant (Met) Is Indispensable for larval metamorphosis and female reproduction in the cotton bollworm Helicoverpa armigera. Front. Physiol. 2018, 9, 1601. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.L.; Saha, T.T.; Roy, S.; Zhao, B.; Raikhel, A.S.; Zou, Z. Temporal coordination of carbohydrate metabolism during mosquito reproduction. PLoS Genet. 2015, 11, e1005309. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Saha, T.T.; Zou, Z.; Raikhel, A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018, 63, 489–511. [Google Scholar] [CrossRef]
- Grönke, S.; Mildner, A.; Fellert, S.; Tennagels, N.; Petry, S.; Müller, G.; Jäckle, H.; Kühnlein, R.P. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 2005, 1, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Alabaster, A.; Isoe, J.; Zhou, G.; Lee, A.; Murphy, A.; Day, W.A.; Miesfeld, R.L. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochem. Mol. Biol. 2011, 41, 946–955. [Google Scholar] [CrossRef]
- Zhou, G.; Pennington, J.E.; Wells, M.A. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Insect Biochem. Mol. Biol. 2004, 34, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Sangbaramou, R.; Camara, I.; Huang, X.Z.; Shen, J.; Tan, S.Q.; Shi, W.P. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana. PLoS ONE 2018, 13, e0206816. [Google Scholar] [CrossRef]
- King, B.; Li, S.; Liu, C.; Kim, S.J.; Sim, C. Suppression of glycogen synthase expression reduces glycogen and lipid storage during mosquito overwintering diapause. J. Insect Physiol. 2020, 120, 103971. [Google Scholar] [CrossRef] [PubMed]
- Hough, J.; Howard, J.D.; Brown, S.; Portwood, D.E.; Kilby, P.M.; Dickman, M.J. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front. Bioeng. Biotechnol. 2022, 10, 980592. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Niu, N.; Zhao, Y.; Liu, W.; Moussian, B.; Zhang, J. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in Locusta migratoria. Insect Mol. Biol. 2020, 29, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Machona, O.; Chidzwondo, F.; Mangoyi, R. Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnol. 2022, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Mollaei, M.; Izadi, H.; Moharramipour, S.; Behroozi Moghadam, E. Physiology of hibernating larvae of the pistachio twig borer, Kermania pistaciella Amsel (Lepidoptera: Tineidae), Collected from Akbari Cultivar of Pistacia vera L. Neotrop. Entomol. 2017, 46, 58–65. [Google Scholar] [CrossRef]
- Wang, S.S.; Li, G.Y.; Liu, Y.K.; Luo, Y.J.; Xu, C.D.; Li, C.; Tang, B. Regulation of Carbohydrate Metabolism by Trehalose-6-Phosphate Synthase 3 in the Brown Planthopper, Nilaparvata lugens. Front. Physiol. 2020, 11, 575485. [Google Scholar] [CrossRef]
- Guo, J.Y.; Dong, S.Z.; Ye, G.Y.; Li, K.; Zhu, J.Y.; Fang, Q.; Hu, C. Oosorption in the endoparasitoid, Pteromalus puparum. J. Insect Sci. 2011, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Gu, F.; Liu, Z.; Li, Z.; Wu, F.; Sheng, S. The key role of fatty acid synthase in lipid metabolism and metamorphic development in a destructive insect pest, Spodoptera litura (Lepidoptera: Noctuidae). Int. J. Mol. Sci. 2022, 23, 9064. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.J.; Chen, N.; Bai, Y.; Qiao, J.W.; Li, S.; Fan, Y.L.; Liu, T.X. BgFas1: A fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). Insect Biochem. Mol. Biol. 2019, 112, 103203. [Google Scholar] [CrossRef] [PubMed]
- Nunes DL, M.; Carvalho-Araujo, M.F.; Silva-Cabral, S.; Rios, T.; Chagas-Lima, A.C.; de Sousa, G.; Ramos, I.; Gomes SA, O.; Atella, G.C. Lipid metabolism dynamic in Triatomine Rhodnius prolixus during acute Trypanosoma rangeli infection. Acta Trop. 2023, 248, 107032. [Google Scholar] [CrossRef] [PubMed]
- Gäde, G. Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu. Rev. Entomol. 2004, 49, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Toprak, U.; Hegedus, D.; Doğan, C.; Güney, G. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 2020, 104, e21682. [Google Scholar] [CrossRef]
- Gupta, V.; Frank, A.M.; Matolka, N.; Lazzaro, B.P. Inherent constraints on a polyfunctional tissue lead to a reproduction-immunity tradeoff. BMC Biol. 2022, 20, 127. [Google Scholar] [CrossRef]
- Shi, J.F.; Xu, Q.Y.; Sun, Q.K.; Meng, Q.W.; Mu, L.L.; Guo, W.C.; Li, G.Q. Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochem. Mol. Biol. 2016, 77, 52–68. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, L.; Dai, J.; Yuan, G.; Wang, L.; Qian, C.; Zhu, B.; Liu, C.; Wei, G. Characterization and functional analysis of serpin-28 gene from silkworm, Bombyx mori. J. Invertebr. Pathol. 2018, 159, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Yang, R.L.; Wang, W.P.; Zhou, Q.H.; Chen, E.H.; Yuan, G.R.; Wang, J.J.; Dou, W. Involvement of Met and Kr-h1 in JH-Mediated Reproduction of Female Bactrocera dorsalis (Hendel). Front. Physiol. 2018, 9, 482. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chen, Y.Z.; Lou, Y.H.; Zhang, C.X. Vitellogenin and Vitellogenin-Like Genes in the Brown Planthopper. Front. Physiol. 2019, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Guo, W.; Jiang, F.; Kang, L.; Zhou, S. Argonaute1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol. 2013, 43, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Tang, Y.; Jin, Y.; Xu, J.; Zhao, H.; Zhou, M.; Tang, B.; Wang, S. Fatty acid synthase 2 knockdown alters the energy allocation strategy between immunity and reproduction during infection by Micrococcus luteus in Locusta migratoria. Pestic. Biochem. Physiol. 2024, 205, 106127. [Google Scholar] [CrossRef]
- Wicker-Thomas, C.; Garrido, D.; Bontonou, G.; Napal, L.; Mazuras, N.; Denis, B.; Rubin, T.; Parvy, J.P.; Montagne, J. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J. Lipid Res. 2015, 56, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Guo, S.; Wang, Y.; Liu, S.; Wang, X. Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts. Insect Sci. 2024, 31, 1453–1465. [Google Scholar] [CrossRef]
- Pistillo, D.; Manzi, A.; Tino, A.; Boyl, P.P.; Graziani, F.; Malva, C. The Drosophila melanogaster lipase homologs: A gene family with tissue and developmental specific expression. J. Mol. Biol. 1998, 276, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Bulankina, A.V.; Hsiao, H.H.; Urlaub, H.; Jäckle, H.; Kühnlein, R.P. PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 2010, 12, 521–532. [Google Scholar] [CrossRef]
- Bi, J.; Xiang, Y.; Chen, H.; Liu, Z.; Grönke, S.; Kühnlein, R.P.; Huang, X. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J. Cell Sci. 2012, 125 Pt 15, 3568–3577. [Google Scholar] [CrossRef]
- Chen, X.; Firdaus, S.J.; Howard, A.D.; Soulages, J.L.; Arrese, E.L. Clues on the function of Manduca sexta perilipin 2 inferred from developmental and nutrition-dependent changes in its expression. Insect Biochem. Mol. Biol. 2017, 81, 19–31. [Google Scholar] [CrossRef]
- Binh, T.D.; Nguyen YD, H.; Pham TL, A.; Komori, K.; Nguyen TQ, C.; Taninaka, M.; Kamei, K. Dysfunction of lipid storage droplet-2 suppresses endoreplication and induces JNK pathway-mediated apoptotic cell death in Drosophila salivary glands. Sci. Rep. 2022, 12, 4302. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.; Ibrahim, M.M. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 2001, 47, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.P.; Kang, K.; Wang, H.J.; Pan, B.Y.; Xu, C.D.; Tang, B.; Zhang, D.W. Effect of glycogen synthase and glycogen phosphorylase knockdown on the expression of glycogen- and insulin-related genes in the rice brown planthopper Nilaparvata lugens. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 33, 100652. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Chen, J.; Shen, Q.; Wang, S.; Xu, H.; Tang, B. Glycogen phosphorylase and glycogen synthase: Gene cloning and expression analysis reveal their role in trehalose metabolism in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). J. Insect Sci. 2017, 17, 42. [Google Scholar] [CrossRef]
- Wegener, G.; Macho, C.; Schlöder, P.; Kamp, G.; Ando, O. Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle. J. Exp. Biol. 2010, 213, 3852–3857. [Google Scholar] [CrossRef]
- Yamada, T.; Habara, O.; Kubo, H.; Nishimura, T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 2018, 145, dev158865. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Chen, X.; Li, Y.; Li, W.; Zhou, Q. Lipophorin receptor regulates Nilaparvata lugens fecundity by promoting lipid accumulation and vitellogenin biosynthesis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2018, 219–220, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, V.; Bernardi, F.; Romani, P.; Duchi, S.; Gargiulo, G. Building up the Drosophila eggshell: First of all the eggshell genes must be transcribed. Dev. Dyn. 2008, 237, 2061–2072. [Google Scholar] [CrossRef]
- Fruttero, L.L.; Leyria, J.; Canavoso, L.E. Lipids in insect oocytes: From the storage pathways to their multiple functions. Results Probl. Cell Differ. 2017, 63, 403–434. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lu, T.; Guo, J.; Lin, Z.; Jin, Q.; Zhang, X.; Zou, Z. Helicoverpa armigera miR-2055 regulates lipid metabolism via fatty acid synthase expression. Open Biol. 2022, 12, 210307. [Google Scholar] [CrossRef]
- May, C.M.; Doroszuk, A.; Zwaan, B.J. The effect of developmental nutrition on life span and fecundity depends on the adult reproductive environment in Drosophila melanogaster. Ecol. Evol. 2015, 5, 1156–1168. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, B.Q.; Chen, Z.B.; Li, C.Q.; Li, X.Y.; Hong, J.S.; Luan, J.B. Vitellogenin facilitates associations between the whitefly and a bacteriocyte symbiont. mBio 2023, 14, e0299022. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Wu, W.; Huang, L.; Yi, G.; Jia, D.; Chen, Q.; Chen, H.; Wei, T. Insect bacterial symbiont-mediated vitellogenin uptake into oocytes to support egg development. mBio 2020, 11, e01142-20. [Google Scholar] [CrossRef] [PubMed]
Primer Name | F-Primer Sequence (5′–3′) | R-Primer Sequence (5′–3′) | |
---|---|---|---|
FAS2 | ACGGAACAGGCACTAAA | GAACCAGGCTGATAAAG | cDNA clones |
GFP | AAGGGCGAGGAGCTGTTCACCG | CAGCAGGACCATGTGATCGCGC | |
Actin | GACGAAGAAGTTGCCGCTC | TCCCATTCCCACCATCACA | RT-qPCR |
FAS1 | TGTTGAAGTGCCTGGAGAT | GTGGGTTTGATGAAGGAGTTT | |
FAS2 | TTAGTGGAAAGGGAGGC | CCATACAAGGGTCAGGT | |
FAS3 | TCACTGGAACGGAAACGAAA | CCATAGCAAATGCAAAGGGT | |
FAS4 | ATCGCACTATCAGGAC | CTACTATGAAAGGCAAC | |
FAS5 | CCACCAGTTGTGATGAG | AACAGAAACCCGCAGA | |
ACC | GTGTGTTGGAGCCAGAAGGAAT | CACTTGGAAGGTTAGGAGAGGA | |
ELO6 | CTGCAATGACTCTGGTCCGATAA | GCGCTGGTCACTCCTGTTGTC | |
FAR | CACGGCGTACTGTCACTTG | TCAGCACTGGTAAACCCTTC | |
Lsd-1 | TGTCACTTGGAGGAGAAAA | AAGGTCGGAGTATCAGCAC | |
Lsd-2 | GCTCCGAAAATGGAATGC | TGCCTCAGCCGTTGATAGT | |
Lip3 | GGTCGGATTTGATGCC | TGAGCCAGGGTCTTTGTA | |
Bmm | ATCACTGACGAGGGTCTACGA | ATACTGGTGTTGGCGAGGTT | |
TPS | AGACGAACGGACACTACGAATGA | ATCCTCCCTTAGCGAACCCATC | |
TRE | GCACTCCATAATCAAGCAGCAC | TAATGAACCATCGCCCAGAG | |
GS | ACTCCGAATGGTCTCAATGTCA | GGTAGGGAATATCAGGAATGCA | |
GP | CCCTGGTGACCTAGACAAACT | GGGTGTCATCTCATAGAAATCG | |
VgA | CTCTTTCGTCCAACAGCCG | CTCGCAACCATTCCCTTCA | |
VgB | GGCAGTTTTGCTTATTATGGG | TTCCGGGTTTGACAGTTGG | |
VgR1 | ATAAAGGTCTACCATCCAGCCC | GACAGGCACAGGTGTAGGAGTT | |
VgR2 | GGCAAAAGGGATCACTCGA | GCCACCATCAGCCCAAAAT | |
dsGFP | TAATACGACTCACTATAGGGAAGGGCGAGGAGCTGTTCACCG | TAATACGACTCACTATAGGGCAGCAGGACCATGTGATCGCGC | dsRNA synthesis |
dsFAS2 | TAATACGACTCACTATAGGGACGGAACAGGCACTAAA | TAATACGACTCACTATAGGGGAACCAGGCTGATAAAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Tang, Y.; Jin, Y.; Ma, T.; Zhang, C.; Lou, J.; Tang, B.; Wang, S. Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria. Insects 2025, 16, 120. https://doi.org/10.3390/insects16020120
Xu J, Tang Y, Jin Y, Ma T, Zhang C, Lou J, Tang B, Wang S. Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria. Insects. 2025; 16(2):120. https://doi.org/10.3390/insects16020120
Chicago/Turabian StyleXu, Jiaying, Ya Tang, Yi Jin, Tingting Ma, Chen Zhang, Jianan Lou, Bin Tang, and Shigui Wang. 2025. "Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria" Insects 16, no. 2: 120. https://doi.org/10.3390/insects16020120
APA StyleXu, J., Tang, Y., Jin, Y., Ma, T., Zhang, C., Lou, J., Tang, B., & Wang, S. (2025). Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria. Insects, 16(2), 120. https://doi.org/10.3390/insects16020120