The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides
2.3. Insecticidal Assays
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 1996, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 2003, 48, 339–364. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, X.; Wu, H.; Yu, R.; Zhang, J.; Zhu, K.Y.; Guo, Y.; Ma, E. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria. Pestic. Biochem. Physiol. 2015, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pest Manag. Sci. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Shafer, T.J.; Meyer, D.A. Effects of pyrethroids on voltage-sensitive calcium channels: A critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol. Appl. Pharmacol. 2004, 196, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Galligan, J.J.; Hollingworth, R.M. Agonist actions of neonicotinoids on nicotinic acetylcholine rececptors expressed by cockroach neurons. Neurotoxicology 2007, 28, 829–842. [Google Scholar] [PubMed]
- Le Questel, J.Y.; Graton, J.; Ceron-Carrasco, J.P.; Jacquemin, D.; Planchat, A.; Thany, S.H. New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorg. Med. Chem. 2011, 19, 7623–7634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Granero, C.; Cardona, D.; Gimenez, E.; Lozano, R.; Barril, J.; Aschner, M.; Sánchez-Santed, F.; Cañadas, F. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: Relationship to AChE mRNA expression. Neurotoxicology 2014, 40, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zuo, K.; Kang, Z.; Yang, Y.; Oakeshott, J.G.; Wu, Y. A point mutation in the acetylcholinesterase-1 gene is associated with chlorpyrifos resistance in the plant bug Apolygus lucorum. Insect Biochem. Mol. Biol. 2015, 65, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Asahi, M.; Kobayashi, M.; Matsui, H.; Nakahira, K. Differential mechanisms of action of the novel gamma-aminobutyric acid receptor antagonist ectoparasiticides fluralaner (A1443) and fipronil. Pest Manag. Sci. 2015, 71, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T. Mechanisms of resistance to insecticides targeting RDL GABA receptors in planthoppers. Neurotoxicology 2016. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E. Pest toxicology: The primary mechanisms of pesticide action. Chem. Res. Toxicol. 2009, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.R.; Dively, G.P.; Nelson, J.O. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J. Econ. Entomol. 2000, 93, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Alyokhin, A.; Dively, G.; Patterson, M.; Castaldo, C.; Rogers, D.; Mahoney, M.; Wollam, J. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag. Sci. 2007, 63, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Gorman, K.; Devine, G.; Bennison, J.; Coussons, P.; Punchard, N.; Denholm, I. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag. Sci. 2007, 63, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.P.; Cox, D.; Oliphant, L.; Mitchinson, S.; Denholm, I. Correlated responses to neonicotinoid insecticides in clones of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae). Pest Manag. Sci. 2008, 64, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.E.; Nunez, S.C.; Mann, R.S.; Geden, C.J.; Scharf, M.E. Nicotinoid and pyrethroid insecticide resistance in houseflies (Diptera: Muscidae) collected from Florida dairies. Pest Manag. Sci. 2010, 66, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Vidau, C.; Diogon, M.; Aufauvre, J.; Fontbonne, R.; Vigues, B.; Brunet, J.L.; Texier, C.; Biron, D.G.; Blot, N.; El Alaoui, H.; et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 2011, 6, e21550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, F.; Zou, C.; Hu, Q.; Hu, M. The joint action of destruxins and botanical insecticides (rotenone, azadirachtin and paeonolum) against the cotton aphid, Aphis gossypii Glover. Molecules 2012, 17, 7533–7542. [Google Scholar] [CrossRef] [PubMed]
- Hertzberg, R.C.; MacDonell, M.M. Synergy and other ineffective mixture risk definitions. Sci. Total Environ. 2002, 288, 31–42. [Google Scholar] [CrossRef]
- Zhu, W.; Schmehl, D.R.; Mullin, C.A.; Frazier, J.L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 2014, 9, e77547. [Google Scholar] [CrossRef] [PubMed]
- Taillebois, E.; Beloula, A.; Quinchard, S.; Jaubert-Possamai, S.; Daguin, A.; Servent, D.; Tagu, D.; Thany, S.H.; Tricoire-Leignel, H. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum. PLoS ONE 2014, 9, e96669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taillebois, E.; Alamiddine, Z.; Brazier, C.; Graton, J.; Laurent, A.D.; Thany, S.H.; Le Questel, J.Y. Molecular features and toxicological properties of four common pesticides, acetamiprid, deltamethrin, chlorpyriphos and fipronil. Bioorg. Med. Chem. 2015, 23, 1540–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010, 8, e1000313. [Google Scholar]
- Sadeghi, A.; Van Damme, E.J.; Smagghe, G. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. J. Insect Sci. 2009, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Belden, J.B.; Gilliom, R.J.; Lydy, M.J. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. Manag. 2007, 3, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Phyu, Y.L.; Palmer, C.G.; Warne, M.S.; Hose, G.C.; Chapman, J.C.; Lim, R.P. A comparison of mixture toxicity assessment: Examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia. Chemosphere 2011, 85, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Willmott, A.L.; Cloyd, R.A.; Zhu, K.Y. Efficacy of pesticide mixtures against the western flower thrips (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. J. Econ. Entomol. 2013, 106, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Saleem, M.A.; Sayyed, A.H. Efficacy of insecticide mixtures against pyrethroid- and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Corbel, V.; Raymond, M.; Chandre, F.; Darriet, F.; Hougard, J.M. Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Manag. Sci. 2004, 60, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Darriet, F.; Chandre, F. Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae). Pest Manag. Sci. 2013, 69, 905–910. [Google Scholar] [CrossRef] [PubMed]
Mixture | Percent Concentration Ratios for Each Insecticide | Final Insecticide Concentration (µg/mL) | |||
---|---|---|---|---|---|
Acetamiprid | Deltamethrin | Chlorpyrifos | Fipronil | ||
binary combination | |||||
DEL + CHL | 0.0 | 5.2 | 94.8 | 0.0 | 112.8 |
CHL + FIP | 0.0 | 0.0 | 96.6 | 3.4 | 110.8 |
DEL + FIP | 0.0 | 60.7 | 0.0 | 39.3 | 9.6 |
ACE + DEL | 3.9 | 96.1 | 0.0 | 0.0 | 6.1 |
ACE + FIP | 5.8 | 0.0 | 0.0 | 94.2 | 4.0 |
ACE + CHL | 0.2 | 0.0 | 99.8 | 0.0 | 107.2 |
ternary combination | |||||
ACE + DEL + CHL | 0.2 | 5.2 | 94.6 | 0.0 | 113.1 |
ACE + DEL + FIP | 2.4 | 59.3 | 0.0 | 38.4 | 9.8 |
ACE + CHL + FIP | 0.2 | 0.0 | 96.4 | 3.4 | 111.0 |
DEL + CHL + FIP | 0.0 | 5.0 | 91.8 | 3.2 | 116.6 |
quaternary combination | |||||
ACE + DEL + CHL + FIP | 0.2 | 5.0 | 91.6 | 3.2 | 116.8 |
Mixture | Expected Mortality % | Observed Mortality % | χ2 | p (χ2) | MDR | Type of Combined Action |
---|---|---|---|---|---|---|
DEL + CHL | 21.69 | 32.36 | 6.70 | 0.01 | 1.5 | synergistic |
CHL + FIP | 19.91 | 24.32 | 1.22 | n.s. | 1.2 | addition |
DEL + FIP | 19.00 | 14.84 | 1.12 | n.s. | 0.8 | addition |
ACE + DEL | 20.84 | 27.08 | 2.36 | n.s. | 1.3 | addition |
ACE + FIP | 19.06 | 28.01 | 5.19 | 0.05 | 1.5 | synergistic |
ACE + CHL | 21.75 | 31.35 | 5.42 | 0.02 | 1.4 | synergistic |
ACE + DEL + CHL | 32.14 | 44.45 | 6.95 | 0.01 | 1.4 | synergistic |
ACE + DEL + FIP | 29.45 | 37.03 | 2.77 | n.s. | 1.3 | addition |
ACE + CHL + FIP | 30.36 | 33.88 | 0.59 | n.s. | 1.1 | addition |
DEL + CHL + FIP | 30.30 | 06.66 | 26.46 | 0.001 | 0.2 | antagonism |
ACE + DEL + CHL + FIP | 40.75 | 34.74 | 1.50 | n.s. | 0.9 | addition |
Mixture | Observed Mortality % | χ2 | p (χ2) |
---|---|---|---|
DEL + CHL | 43.13 | 14.12 | 0.001 |
CHL + FIP | 44.39 | 48.48 | 0.001 |
DEL + FIP | 58.84 | 2.94 | n.s. |
ACE + DEL | 73.41 | 745.24 | 0.001 |
ACE + FIP | 69.76 | 1512.75 | 0.001 |
ACE + CHL | 83.95 | 518.33 | 0.001 |
ACE + DEL + CHL | 95.96 | 848.38 | 0.001 |
ACE + DEL + FIP | 91.93 | 1206.67 | 0.001 |
ACE + CHL + FIP | 92.29 | 1435.43 | 0.001 |
DEL + CHL + FIP | 18.97 | 6597.24 | 0.001 |
ACE + DEL + CHL + FIP | 94.42 | 2128.33 | 0.001 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taillebois, E.; Thany, S.H. The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum. Insects 2016, 7, 53. https://doi.org/10.3390/insects7040053
Taillebois E, Thany SH. The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum. Insects. 2016; 7(4):53. https://doi.org/10.3390/insects7040053
Chicago/Turabian StyleTaillebois, Emiliane, and Steeve H. Thany. 2016. "The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum" Insects 7, no. 4: 53. https://doi.org/10.3390/insects7040053
APA StyleTaillebois, E., & Thany, S. H. (2016). The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum. Insects, 7(4), 53. https://doi.org/10.3390/insects7040053