The efficacy of topical, leaf residue, and soil drench applications with
Isaria fumosorosea blastospores (
Ifr strain 3581) was assessed for the management of the citrus root weevil,
Diaprepes abbreviatus (L.). Blastospores of
Ifr were applied topically at a rate of 10
7 blastospores mL
−1 on both the larvae and adults, and each insect stage was incubated in rearing cups with artificial diet at 25 °C, either in the dark or in a growth chamber under a 16 h photophase for 2 weeks, respectively. Percent larval and adult mortality due to the infection of
Ifr was assessed after 14 days as compared to untreated controls. Leaf residue assays were assessed by feeding the adults detached citrus leaves previously sprayed with
Ifr (10
7 blastospores mL
−1) in Petri dish chambers and then incubating them at 25 °C for 2–3 weeks. Efficacy of the soil drench applications was assessed on five larvae feeding on the roots of a
Carrizo hybrid citrus seedling ~8.5–10.5 cm below the sterile sand surface in a single 16 cm × 15.5 cm pot inside a second pot lined with plastic mesh to prevent escapees. Drench treatments per pot consisted of 100 mL of
Ifr suspension (10
7 blastospores mL
−1), flushed with 400, 900, or 1400 mL of water compared to 500, 1000, and 1500 mL of water only for controls. The mean concentration of
Ifr propagules as colony forming units per gram (CFUs g
−1) that leached to different depths in the sand profile per treatment drench rate was also determined. Two weeks post-drenching of
Ifr treatments, larvae were assessed for percent mortality, size differences, and effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. Topical spray applications caused 13 and 19% mortality in larvae and adults after 7 days compared to none in the control after 14 days, respectively. Adults feeding on a single
Ifr treated leaf for 24 h consumed less than the control, and resulted in 100% mortality 35 days post-treatment compared to 33% in the untreated control. Although offered fresh, untreated leaves after 24 h, only adults in the control group consumed them.
Ifr CFUs g
−1 were isolated 8.5–10.5 cm below the sand surface for the 1000 and 1500 mL drench rates only, resulting in 2%–4% larval mortality. For all the
Ifr drench treatments, no differences were observed in percent larval mortality and size or the effect of treatments in reducing feeding damage to the plant root biomass compared to the controls. These results suggest that the foliar application of
Ifr may be an efficient biocontrol strategy for managing adult populations of
D. abbreviatus; potential alternative larval management strategies are discussed.
Full article