Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits
Abstract
:1. Introduction
2. Results
2.1. cg23627948-GNA12-Obesity
2.2. cg21153102-CHP1/GCHFR-DBP
2.3. cg05280698-HKR1-Kidney Function
2.4. cg03186999-CTDNEP1-SBP
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Sources
5.2. Analyses
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Public Health Impact of Chemicals: Knowns and Unknowns; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Environmental Chemical Exposures and Human Epigenetics|International Journal of Epidemiology|Oxford Academic. Available online: https://academic.oup.com/ije/article/41/1/79/645872 (accessed on 14 June 2024).
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical Pollution: A Growing Peril and Potential Catastrophic Risk to Humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Bollati, V. Epigenetics and Environmental Chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental Chemicals and DNA Methylation in Adults: A Systematic Review of the Epidemiologic Evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, J.; Zhang, F.; Zhu, Z.; Qi, T.; Zheng, Z.; Lloyd-Jones, L.R.; Marioni, R.E.; Martin, N.G.; Montgomery, G.W.; et al. Integrative Analysis of Omics Summary Data Reveals Putative Mechanisms Underlying Complex Traits. Nat. Commun. 2018, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al. Causal Associations between Risk Factors and Common Diseases Inferred from GWAS Summary Data. Nat. Commun. 2018, 9, 224. [Google Scholar] [CrossRef]
- Paul, K.C.; Chuang, Y.-H.; Cockburn, M.; Bronstein, J.M.; Horvath, S.; Ritz, B. Organophosphate Pesticide Exposure and Differential Genome-Wide DNA Methylation. Sci. Total Environ. 2018, 645, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hivert, M.-F.; Cardenas, A.; Zhong, J.; Rifas-Shiman, S.L.; Agha, G.; Colicino, E.; Just, A.C.; Amarasiriwardena, C.; Lin, X.; et al. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study. Environ. Health Perspect. 2017, 125, 087019. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.K.; Shrestha, S.; Lillycrop, K.A.; Joglekar, C.V.; Pan, H.; Holbrook, J.D.; Fall, C.H.; Yajnik, C.S.; Chandak, G.R. Vitamin B12 Supplementation Influences Methylation of Genes Associated with Type 2 Diabetes and Its Intermediate Traits. Epigenomics 2018, 10, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.K.; Chen, J.; Pommier, G.C.; Cogan, J.Z.; Replogle, J.M.; Adriaens, C.; Ramadoss, G.N.; Shi, Q.; Hung, K.L.; Samelson, A.J.; et al. Genome-Wide Programmable Transcriptional Memory by CRISPR-Based Epigenome Editing. Cell 2021, 184, 2503–2519.e17. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kuen, D.-S.; Chung, Y.; Kurose, H.; Kim, S.G. Gα12/13 Signaling in Metabolic Diseases. Exp. Mol. Med. 2020, 52, 896–910. [Google Scholar] [CrossRef]
- Kim, T.H.; Yang, Y.M.; Han, C.Y.; Koo, J.H.; Oh, H.; Kim, S.S.; You, B.H.; Choi, Y.H.; Park, T.-S.; Lee, C.H.; et al. Gα12 Ablation Exacerbates Liver Steatosis and Obesity by Suppressing USP22/SIRT1-Regulated Mitochondrial Respiration. J. Clin. Investig. 2018, 128, 5587–5602. [Google Scholar] [CrossRef] [PubMed]
- Denis-Henriot, D.; de Mazancourt, P.; Morot, M.; Giudicelli, Y. Mutant Alpha-Subunit of the G Protein G12 Activates Proliferation and Inhibits Differentiation of 3T3-F442A Preadipocytes. Endocrinology 1998, 139, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Eliot, M.N.; Papandonatos, G.D.; Kelsey, K.T.; Fore, R.; Langevin, S.; Buckley, J.; Chen, A.; Lanphear, B.P.; Cecil, K.M.; et al. Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study. Environ. Health Perspect. 2022, 130, 37005. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Zietse, R.; Unwin, R.J.; Ellison, D.H. Pathogenesis of Calcineurin Inhibitor-Induced Hypertension. J. Nephrol. 2012, 25, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Siffert, W.; Düsing, R. Sodium-Proton Exchange and Primary Hypertension. An Update. Hypertension 1995, 26, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Rezvan, A.; Salerno, J.C.; Husain, A.; Kwon, K.; Jo, H.; Harrison, D.G.; Chen, W. GTP Cyclohydrolase I Phosphorylation and Interaction with GTP Cyclohydrolase Feedback Regulatory Protein Provide Novel Regulation of Endothelial Tetrahydrobiopterin and Nitric Oxide. Circ. Res. 2010, 106, 328–336. [Google Scholar] [CrossRef]
- Lindholm, M.E.; Marabita, F.; Gomez-Cabrero, D.; Rundqvist, H.; Ekström, T.J.; Tegnér, J.; Sundberg, C.J. An Integrative Analysis Reveals Coordinated Reprogramming of the Epigenome and the Transcriptome in Human Skeletal Muscle after Training. Epigenetics 2014, 9, 1557–1569. [Google Scholar] [CrossRef]
- Liu, H.; Doke, T.; Guo, D.; Sheng, X.; Ma, Z.; Park, J.; Vy, H.M.T.; Nadkarni, G.N.; Abedini, A.; Miao, Z.; et al. Epigenomic and Transcriptomic Analyses Define Core Cell Types, Genes and Targetable Mechanisms for Kidney Disease. Nat. Genet. 2022, 54, 950–962. [Google Scholar] [CrossRef]
- Wang, C.; Cardenas, A.; Hutchinson, J.N.; Just, A.; Heiss, J.; Hou, L.; Zheng, Y.; Coull, B.A.; Kosheleva, A.; Koutrakis, P.; et al. Short- and Intermediate-Term Exposure to Ambient Fine Particulate Elements and Leukocyte Epigenome-Wide DNA Methylation in Older Men: The Normative Aging Study. Environ. Int. 2022, 158, 106955. [Google Scholar] [CrossRef]
- Rallabandi, H.R.; Choi, H.; Cha, H.; Kim, Y.J. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life 2023, 13, 1338. [Google Scholar] [CrossRef]
- Fujiwara, A.; Ozawa, M.; Sumida, K.; Hirawa, N.; Yatsu, K.; Ichihara, N.; Haze, T.; Komiya, S.; Ohki, Y.; Kobayashi, Y.; et al. LPIN1 Is a New Target Gene for Essential Hypertension. J. Hypertens. 2022, 40, 536–543. [Google Scholar] [CrossRef]
- Han, S.; Bahmanyar, S.; Zhang, P.; Grishin, N.; Oegema, K.; Crooke, R.; Graham, M.; Reue, K.; Dixon, J.E.; Goodman, J.M. Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway. J. Biol. Chem. 2012, 287, 3123–3137. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.R.; O’Donnell, A.H.; Rollins, R.A.; Peckham, H.E.; Lee, C.; Milekic, M.H.; Chanrion, B.; Fu, Y.; Su, T.; Hibshoosh, H.; et al. Chromatin and Sequence Features That Define the Fine and Gross Structure of Genomic Methylation Patterns. Genome Res. 2010, 20, 972–980. [Google Scholar] [CrossRef]
- Hatton, A.A.; Cheng, F.-F.; Lin, T.; Shen, R.-J.; Chen, J.; Zheng, Z.; Qu, J.; Lyu, F.; Harris, S.E.; Cox, S.R.; et al. Genetic Control of DNA Methylation Is Largely Shared across European and East Asian Populations. Nat. Commun. 2024, 15, 2713. [Google Scholar] [CrossRef]
- Ishigaki, K.; Akiyama, M.; Kanai, M.; Takahashi, A.; Kawakami, E.; Sugishita, H.; Sakaue, S.; Matoba, N.; Low, S.-K.; Okada, Y.; et al. Large-Scale Genome-Wide Association Study in a Japanese Population Identifies Novel Susceptibility Loci across Different Diseases. Nat. Genet. 2020, 52, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, T.-T.; Feng, Y.-C.A.; Yu, M.; Lin, S.-C.; Longchamps, R.J.; Wang, S.-H.; Hsu, Y.-H.; Yang, H.-I.; Kuo, P.-H.; et al. Analysis across Taiwan Biobank, Biobank Japan, and UK Biobank Identifies Hundreds of Novel Loci for 36 Quantitative Traits. Cell Genom. 2023, 3, 100436. [Google Scholar] [CrossRef]
- Li, M.; Zou, D.; Li, Z.; Gao, R.; Sang, J.; Zhang, Y.; Li, R.; Xia, L.; Zhang, T.; Niu, G.; et al. EWAS Atlas: A Curated Knowledgebase of Epigenome-Wide Association Studies. Nucleic Acids Res. 2019, 47, D983–D988. [Google Scholar] [CrossRef]
- McRae, A.F.; Marioni, R.E.; Shah, S.; Yang, J.; Powell, J.E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Bowdler, L.; Painter, J.N.; et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci. Rep. 2018, 8, 17605. [Google Scholar] [CrossRef] [PubMed]
- Hannon, E.; Dempster, E.; Viana, J.; Burrage, J.; Smith, A.R.; Macdonald, R.; St Clair, D.; Mustard, C.; Breen, G.; Therman, S.; et al. An Integrated Genetic-Epigenetic Analysis of Schizophrenia: Evidence for Co-Localization of Genetic Associations and Differential DNA Methylation. Genome Biol. 2016, 17, 176. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Yazar, S.; et al. Large-Scale Cis- and Trans-eQTL Analyses Identify Thousands of Genetic Loci and Polygenic Scores That Regulate Blood Gene Expression. Nat. Genet. 2021, 53, 1300–1310. [Google Scholar] [CrossRef]
Trait (Source) | CpG Site | Lead SNP (A1 Allele) | Association * | Colocalization Results | |||
---|---|---|---|---|---|---|---|
B | p | B | PSMR | PHEIDI | |||
Body fat percentage (UKBB) | cg23627948 | rs798549(C) | 0.01 | 1.3 × 10−8 | 0.01 | 1.4 × 10−8 | 0.04 |
1.41 | <2 × 10−200 | ||||||
DBP (UKBB) | cg21153102 | rs4924526(A) | 0.17 | 2.5 × 10−23 | 0.18 | 8.0 × 10−22 | 0.3 |
0.99 | <2 × 10−200 | ||||||
Kidney function (PMID: 31152163) | cg05280698 | rs320881(G) | 0.003 | 2.9 × 10−21 | 0.01 | 4.0 × 10−17 | 0.04 |
0.59 | 2.1 × 10−75 | ||||||
SBP (UKBB) | cg03186999 | rs402514(T) | −0.28 | 5.1 × 10−19 | −0.45 | 4.6 × 10−16 | 0.01 |
0.62 | 8.0 × 10−86 |
Trait (Source) | CpG Site | Lead SNP (A1 Allele) | Association * | Colocalization Results | |||
---|---|---|---|---|---|---|---|
B | p | B | PSMR | PHEIDI | |||
Body fat percentage (UKBB) | cg23627948 | rs798549(C) | 0.01 | 1.3 × 10−8 | 0.06 | 1.61 × 10−8 | 0.3 |
0.15 | <2 × 10−200 | ||||||
DBP (UKBB) | cg21153102 | rs11070317(C) | 0.18 | 1.7 × 10−24 | 2.06 | 6.1 × 10−23 | 0.3 |
0.09 | 5.2 × 10−294 | ||||||
Kidney function (PMID: 31152163) | cg05280698 | rs73025481(A) | 0.004 | 2.3 × 10−23 | 0.04 | 2.5 × 10−16 | 0.02 |
0.08 | 3.2 × 10−47 | ||||||
SBP (UKBB) | cg03186999 | rs222851(A) | −0.27 | 8.6 × 10−19 | −11.22 | 4.3 × 10−14 | 0.03 |
0.02 | 1.7 × 10−47 |
Trait | CpG Site | Correlation | Sample Size | p-Value | PMID |
---|---|---|---|---|---|
Prenatal lead exposure | cg23627948 | − | 268 | 7.8 × 10−5 | 28858830 |
Organophosphate exposure | cg23627948 | + | 580 | 2.2 × 10−7 | 30248838 |
Prenatal perfluorooctane sulfonate (PFOS) exposure | cg21153102 | + | 266 | 1.0 × 10−5 | 35266797 |
Vitamin B12 supplement | cg05280698 | + | 12 | 5.0 × 10−7 | 29135286 |
Air pollution (Pb) | cg03186999 | − | 695 | 2.0 × 10−10 | 34717175 |
Air pollution (Na) | cg03186999 | − | 695 | 2.8 × 10−13 | 34717175 |
Predictor | Outcome | B | SE | p | NSNPs |
---|---|---|---|---|---|
cg23627948 → GNA12 → Obesity | |||||
cg23627948 | Body fat percentage | 0.01 | 0.001 | 1.0 × 10−8 | 17 |
cg23627948 | GNA12 | −0.10 | 0.007 | 4.4 × 10−47 | 7 |
GNA12 | Body fat percentage | −0.03 | 0.004 | 4.5 × 10−12 | 20 |
cg21153102 → GCHFR/CHP1 → DBP | |||||
cg21153102 | DBP | 0.18 | 0.02 | 1.8 × 10−23 | 12 |
cg21153102 | CHP1 | −0.15 | 0.009 | 1.7 × 10−53 | 12 |
cg21153102 | GCHFR | 0.05 | 0.008 | 1.9 × 10−11 | 7 |
CHP1 | DBP | −0.57 | 0.08 | 9.8 × 10−13 | 6 |
GCHFR | DBP | 0.39 | 0.06 | 4.1 × 10−10 | 9 |
cg05280698 → HKR1 → Kidney function | |||||
cg05280698 | Kidney Function | 0.01 | 0.001 | 2.3 × 10−9 | 3 |
cg05280698 | HKR1 | −0.42 | 0.02 | 5.4 × 10−87 | 3 |
HKR1 | Kidney Function | −0.01 | 0.001 | 5.1 × 10−11 | 17 |
cg03186999 → CTDNEP1 → SBP | |||||
cg03186999 | SBP | −0.44 | 0.05 | 7.2 × 10−16 | 3 |
cg03186999 | CTDNEP1 | 0.26 | 0.02 | 2.4 × 10−46 | 3 |
CTDNEP1 | SBP | −1.05 | 0.1 | 1.0 × 10−19 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikpay, M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes 2024, 8, 29. https://doi.org/10.3390/epigenomes8030029
Nikpay M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes. 2024; 8(3):29. https://doi.org/10.3390/epigenomes8030029
Chicago/Turabian StyleNikpay, Majid. 2024. "Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits" Epigenomes 8, no. 3: 29. https://doi.org/10.3390/epigenomes8030029
APA StyleNikpay, M. (2024). Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes, 8(3), 29. https://doi.org/10.3390/epigenomes8030029