DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Study Selection
2.2. Study Characteristics
2.3. Risk of Bias within Studies
2.4. Results from Studies on Cell Lines
2.4.1. ATP Binding Cassette Subfamily G Member 2 (ABCG2)
2.4.2. Ras Association Domain Family Member 1 (RASSF1)
2.4.3. XIAP-Associated Factor 1 (XAF1)
2.4.4. p73, a Homolog of p53
2.4.5. Connexin 32 (Cx32)
2.4.6. DNA Mismatch Repair Gene (MSH2)
2.4.7. Schlafen 11 (SLFN11)
2.5. Results from Studies on Cell Lines and Tissues
2.5.1. XIAP-Associated Factor 1 (XAF1)
2.5.2. Neurofilament Heavy Chain (NEFH)
2.5.3. Fms-Related Receptor Tyrosine Kinase 1 (FLT1), Kinase Insert Domain Receptor (KDR)
2.5.4. Apoptosis-Associated Speck-like Protein Containing a Card/Target of Methylation-Induced Silencing 1 (ASC/TMS1)
2.5.5. Organic Cation Transporter 2 (OCT2)
2.5.6. Disabled Homolog 2-INTERACTING Protein (DAB2IP)
2.5.7. Apoptosis Stimulating Protein of p53 1 (ASPP1)
2.5.8. Leukemia Inhibitory Factor Receptor (LIFR)
2.5.9. Doublecortin-like Kinase 1 (DCLK1)
2.5.10. Paraoxonase 1 (PON1)
2.5.11. Glutaminyl-Peptide Cyclotransferase (QPCT)
2.5.12. Transposable Elements (TE)
2.5.13. Ubiquinol Cytochrome c Reductase Hinge (UQCRH)
2.5.14. T-Cell Activation Inhibitor, Mitochondrial (TCAIM)
2.6. Results from Studies on Tissues
2.6.1. Von Hippel-Lindau (VHL)
2.6.2. Cystatin-M and Ladinin 1 (CST6, LAD1)
2.6.3. Genome-Wide Methylation Study for Prediction of Response to Sunitinib
2.6.4. Synaptopodin 2 (SYNPO2)
2.6.5. Multiple Genes
2.6.6. Cytotoxic T Lymphocyte–Associated protein 4 (CTLA-4)
3. Discussion
3.1. Summary of Evidence
3.2. Limitations
4. Materials and Methods
4.1. Eligibility Criteria
4.2. Literature Search Strategy
4.3. Study Selection
4.4. Data Extraction Process
4.5. Risk of Bias in Individual Studies
4.6. Outcome Measurements
4.7. Data Synthesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bukavina, L.; Bensalah, K.; Bray, F.; Carlo, M.; Challacombe, B.; Karam, J.A.; Kassouf, W.; Mitchell, T.; Montironi, R.; O’Brien, T.; et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur. Urol. 2022, 82, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Massari, F.; Rizzo, A.; Mollica, V.; Rosellini, M.; Marchetti, A.; Ardizzoni, A.; Santoni, M. Immune-based combinations for the treatment of metastatic renal cell carcinoma: A meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 154, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Plimack, E.R.; Soulières, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Tollefsbol, T. Epigenetics of Personalized Medicine, 1st ed.; Academic Press: London, UK, 2015. [Google Scholar]
- Heyn, H.; Mendez-Gonzalez, J.; Esteller, M. Epigenetic profiling joins personalized cancer medicine. Expert Rev. Mol. Diagn. 2013, 13, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Tanvir, I.; Hassan, A.; Albeladi, F. DNA Methylation and Epigenetic Events Underlying Renal Cell Carcinomas. Cureus 2022, 14, e30743. [Google Scholar] [CrossRef] [PubMed]
- Molina-Cerrillo, J.; Santoni, M.; Ruiz, Á.; Massari, F.; Pozas, J.; Ortego, I.; Gómez, V.; Grande, E.; Alonso-Gordoa, T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit. Rev. Oncol. Hematol. 2022, 180, 103857. [Google Scholar] [CrossRef]
- Easwaran, H.; Tsai, H.C.; Baylin, S.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef]
- Kern, S.E. Why your new cancer biomarker may never work: Recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 2012, 72, 6097–6101. [Google Scholar] [CrossRef]
- Seal, R.L.; Braschi, B.; Gray, K.; Jones, T.E.M.; Tweedie, S.; Haim-Vilmovsky, L.; Bruford, E.A. Genenames.org: The HGNC resources in 2023. Nucleic Acids Res. 2022, 51, D1003–D1009. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Zhan, Z.; Bates, S.E. Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol. Cell. Biol. 2006, 26, 8572–8585. [Google Scholar] [CrossRef] [PubMed]
- Reu, F.J.; Leaman, D.W.; Maitra, R.R.; Bae, S.I.; Cherkassky, L.; Fox, M.W.; Rempinski, D.R.; Beaulieu, N.; MacLeod, A.R.; Borden, E.C. Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res. 2006, 66, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Reu, F.J.; Bae, S.I.; Cherkassky, L.; Leaman, D.W.; Lindner, D.; Beaulieu, N.; MacLeod, A.R.; Borden, E.C. Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J. Clin. Oncol. 2006, 24, 3771–3779. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Huh, J.S.; Chung, S.K.; Lee, J.H.; Byun, D.S.; Ryu, B.K.; Kang, M.J.; Chae, K.S.; Lee, S.J.; Lee, C.H.; et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: Implication for attenuated p53 response to apoptotic stresses. Oncogene 2006, 25, 5807–5822. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Kondo, Y.; Ahmed, S.; Boumber, Y.; Konishi, K.; Guo, Y.; Chen, X.; Vilaythong, J.N.; Issa, J.P. Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res. 2007, 67, 11335–11343. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Iwata, H.; Yano, Y.; Miyazawa, M.; Virgona, N.; Sato, H.; Ueno, K.; Yano, T. Up-regulation of connexin 32 gene by 5-aza-2′-deoxycytidine enhances vinblastine-induced cytotoxicity in human renal carcinoma cells via the activation of JNK signalling. Biochem. Pharmacol. 2010, 80, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Dubrowinskaja, N.; Gebauer, K.; Peters, I.; Hennenlotter, J.; Abbas, M.; Scherer, R.; Tezval, H.; Merseburger, A.S.; Stenzl, A.; Grunwald, V.; et al. Neurofilament Heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med. 2014, 3, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Fay, A.P.; Gagnon, R.; Lin, Y.; Bahamon, B.; Brown, V.; Rosenberg, J.E.; Hutson, T.E.; Baker-Neblett, K.L.; Carpenter, C.; et al. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 2013, 19, 5218–5226. [Google Scholar] [CrossRef]
- Weygant, N.; Qu, D.; May, R.; Tierney, R.M.; Berry, W.L.; Zhao, L.; Agarwal, S.; Chandrakesan, P.; Chinthalapally, H.R.; Murphy, N.T.; et al. DCLK1 is a broadly dysregulated target against epithelial-mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget 2015, 6, 2193–2205. [Google Scholar] [CrossRef]
- Peters, I.; Dubrowinskaja, N.; Abbas, M.; Seidel, C.; Kogosov, M.; Scherer, R.; Gebauer, K.; Merseburger, A.S.; Kuczyk, M.A.; Grunwald, V.; et al. DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC) treated with antiangiogenic therapies. PLoS ONE 2014, 9, e91440. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Hudes, G.R.; Figlin, R.A.; Martini, J.F.; English, P.A.; Huang, X.; Valota, O.; Williams, J.A. Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother. Pharmacol. 2014, 74, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, L.; Mahalingaiah, P.K.; Singh, K.P. Chronic Oxidative Stress Increases Resistance to Doxorubicin-Induced Cytotoxicity in Renal Carcinoma Cells Potentially Through Epigenetic Mechanism. Mol. Pharmacol. 2016, 89, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Hwang, J.; Lee, S.H.; Lee, H.J.; Jelinek, J.; Jeong, H.; Lim, J.S.; Kim, J.M.; Song, K.S.; Kim, B.H.; et al. Decreased efficacy of drugs targeting the vascular endothelial growth factor pathway by the epigenetic silencing of FLT1 in renal cancer cells. Clin. Epigenetics 2015, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.D.; Powles, T.; Van Neste, C.; Meynert, A.; O’Mahony, F.; Laird, A.; Deforce, D.; Van Nieuwerburgh, F.; Trooskens, G.; Van Criekinge, W.; et al. Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer. Oncotarget 2016, 7, 25241–25250. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jin, J.; Ying, J.; Cui, Y.; Sun, M.; Zhang, L.; Fan, Y.; Xu, B.; Zhang, Q. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target. Oncotarget 2015, 6, 22706–22723. [Google Scholar] [CrossRef] [PubMed]
- Nogales, V.; Reinhold, W.C.; Varma, S.; Martinez-Cardus, A.; Moutinho, C.; Moran, S.; Heyn, H.; Sebio, A.; Barnadas, A.; Pommier, Y.; et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 2016, 7, 3084–3097. [Google Scholar] [CrossRef] [PubMed]
- Beuselinck, B.; Job, S.; Becht, E.; Karadimou, A.; Verkarre, V.; Couchy, G.; Giraldo, N.; Rioux-Leclercq, N.; Molinie, V.; Sibony, M.; et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 2015, 21, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, X.; Yu, Q.; Wang, H.; Tan, F.; Zhu, Q.; Yuan, L.; Jiang, H.; Yu, L.; Zeng, S. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci. Transl Med. 2016, 8, 348ra397. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, J.; Wu, K.; Yun, E.J.; Kapur, P.; Pong, R.C.; Du, Y.; Wang, B.; Authement, C.; Hernandez, E.; et al. Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies. Oncogene 2016, 35, 4663–4674. [Google Scholar] [CrossRef]
- Winter, S.; Fisel, P.; Büttner, F.; Rausch, S.; D’Amico, D.; Hennenlotter, J.; Kruck, S.; Nies, A.T.; Stenzl, A.; Junker, K.; et al. Methylomes of renal cell lines and tumors or metastases differ significantly with impact on pharmacogenes. Sci. Rep. 2016, 6, 29930. [Google Scholar] [CrossRef]
- Pompas-Veganzones, N.; Sandonis, V.; Perez-Lanzac, A.; Beltran, M.; Beardo, P.; Juarez, A.; Vazquez, F.; Cozar, J.M.; Alvarez-Ossorio, J.L.; Sanchez-Carbayo, M. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer. Tumour Biol. 2016, 37, 14301–14310. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Y.; Zhu, Y.; Li, H.; Ge, W.; Wu, X.; Zhao, K.; Yuan, J.; Li, Z.; Jiang, S.; et al. Epigenetic silencing of ASPP1 confers 5-FU resistance in clear cell renal cell carcinoma by preventing p53 activation. Int. J. Cancer 2017, 141, 1422–1433. [Google Scholar] [CrossRef]
- Verbiest, A.; Couchy, G.; Job, S.; Zucman-Rossi, J.; Caruana, L.; Lerut, E.; Oyen, R.; de Reyniès, A.; Laguerre, B.; Rioux-Leclercq, N.; et al. Molecular Subtypes of Clear Cell Renal Cell Carcinoma Are Associated With Outcome During Pazopanib Therapy in the Metastatic Setting. Clin. Genitourin. Cancer 2018, 16, e605–e612. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Lv, S.; Wang, H.; Liu, C.; Zhai, Q.; Wang, S.; Cai, G.; Lu, D.; Sun, Z.; Wei, Q. Leukemia Inhibitory Factor Receptor Suppresses the Metastasis of Clear Cell Renal Cell Carcinoma Through Negative Regulation of the Yes-Associated Protein. DNA Cell Biol. 2018, 37, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Kammerer-Jacquet, S.F.; Brunot, A.; Lefort, M.; Bayat, S.; Peyronnet, B.; Verhoest, G.; Mathieu, R.; Lespagnol, A.; Mosser, J.; Laguerre, B.; et al. Metastatic Clear-cell Renal Cell Carcinoma With a Long-term Response to Sunitinib: A Distinct Phenotype Independently Associated With Low PD-L1 Expression. Clin. Genitourin. Cancer 2019, 17, 169–176.e1. [Google Scholar] [CrossRef]
- Li, X.; Yu, Q. PON1 hypermethylation is associated with progression of renal cell carcinoma. J. Cell. Mol. Med. 2019, 23, 6646–6657. [Google Scholar] [CrossRef]
- Zhao, T.; Bao, Y.; Gan, X.; Wang, J.; Chen, Q.; Dai, Z.; Liu, B.; Wang, A.; Sun, S.; Yang, F.; et al. DNA methylation-regulated QPCT promotes sunitinib resistance by increasing HRAS stability in renal cell carcinoma. Theranostics 2019, 9, 6175–6190. [Google Scholar] [CrossRef]
- De Cubas, A.A.; Dunker, W.; Zaninovich, A.; Hongo, R.A.; Bhatia, A.; Panda, A.; Beckermann, K.E.; Bhanot, G.; Ganesan, S.; Karijolich, J.; et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight 2020, 5, e137569. [Google Scholar] [CrossRef]
- Miyakuni, K.; Nishida, J.; Koinuma, D.; Nagae, G.; Aburatani, H.; Miyazono, K.; Ehata, S. Genome-wide analysis of DNA methylation identifies the apoptosis-related gene UQCRH as a tumor suppressor in renal cancer. Mol. Oncol. 2022, 16, 732–749. [Google Scholar] [CrossRef]
- Klümper, N.; Ralser, D.J.; Zarbl, R.; Schlack, K.; Schrader, A.J.; Rehlinghaus, M.; Hoffmann, M.J.; Niegisch, G.; Uhlig, A.; Trojan, L. CTLA4 promoter hypomethylation is a negative prognostic biomarker at initial diagnosis but predicts response and favorable outcome to anti-PD-1 based immunotherapy in clear cell renal cell carcinoma. J. Immunother. Cancer 2021, 9, e002949. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Ren, C.; Wang, Q.; Wang, Y. A novel role of TCAIM: Suppressing renal carcinoma growth and enhancing its sensitivity to sunitinib. FEBS J. 2022, 289, 5259–5278. [Google Scholar] [CrossRef] [PubMed]
- Wilting, R.H.; Dannenberg, J.H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Updates 2012, 15, 21–38. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef]
- Peters, I.; Merseburger, A.S.; Tezval, H.; Lafos, M.; Tabrizi, P.F.; Mazdak, M.; Wolters, M.; Kuczyk, M.A.; Serth, J.; von Klot, C.-A. The prognostic value of DNA methylation markers in renal cell cancer: A systematic review. Kidney Cancer 2020, 4, 3–13. [Google Scholar] [CrossRef]
- Koudonas, A.; Papaioannou, M.; Kampantais, S.; Anastasiadis, A.; Hatzimouratidis, K.; Dimitriadis, G. Methylation of PCDH17 and NEFH as prognostic biomarker for nonmetastatic RCC: A cohort study. Medicine 2022, 101, e29599. [Google Scholar] [CrossRef] [PubMed]
- Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the right cell line for renal cell cancer research. Mol. Cancer 2016, 15, 83. [Google Scholar] [CrossRef]
- Smiraglia, D.J.; Rush, L.J.; Fruhwald, M.C.; Dai, Z.; Held, W.A.; Costello, J.F.; Lang, J.C.; Eng, C.; Li, B.; Wright, F.A.; et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum. Mol. Genet. 2001, 10, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Van Neste, C.; Laird, A.; O’Mahony, F.; Van Criekinge, W.; Deforce, D.; Van Nieuwerburgh, F.; Powles, T.; Harrison, D.J.; Stewart, G.D.; De Meyer, T. Epigenetic sampling effects: Nephrectomy modifies the clear cell renal cell cancer methylome. Cell. Oncol. 2017, 40, 293–297. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Brown, R.; Curry, E.; Magnani, L.; Wilhelm-Benartzi, C.S.; Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 2014, 14, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Polley, M.Y.; Freidlin, B.; Korn, E.L.; Conley, B.A.; Abrams, J.S.; McShane, L.M. Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl. Cancer Inst. 2013, 105, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, A.; Signoretti, S. Tissue biomarkers in renal cell carcinoma: Issues and solutions. Cancer 2009, 115, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Freidlin, B.; Sun, Z.; Gray, R.; Korn, E.L. Phase III clinical trials that integrate treatment and biomarker evaluation. J. Clin. Oncol. 2013, 31, 3158–3161. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000. Available online: http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf (accessed on 6 June 2024).
- Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration. 2019. Available online: https://ntp.niehs.nih.gov/sites/default/files/ntp/ohat/pubs/handbookmarch2019_508.pdf (accessed on 6 June 2024).
Author (Year) | Gene Name (as Stated in the Study) | Gene Name (As Stated in the Recent HUGO Nomenclature | Molecular Pathway/Function | Systemic Agent | Experimental Model | Study Design | Ref |
---|---|---|---|---|---|---|---|
To (2006) | ABCG2 | ABCG2 | ATP—binding cassette half transporter | Mitoxantrone, topotecan, SN38 | cell lines | experimental (cell lines) | [13] |
Reu (2006) | RASSF1 | RASSF1 | Death receptor-dependent apoptosis | Interferons | cell lines | experimental (cell lines) | [14] |
Reu (2006) | XAF1 | XAF1 | Interferon-induced apoptosis | Interferons | cell lines | experimental (cell lines) | [15] |
Lee (2006) | XAF1 | XAF1 | Binding to and counteracting the inhibitory effect of XIAP | Etoposide, 5-FU | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [16] |
Shen (2007) | 32 promoter CpG islands | Respective pathways | 170 agents | cell lines | experimental (cell lines) | [17] | |
Takano (2010) | Cx32 | GJB1 | GJ-dependent transfer of small molecules | Vinblastine | cell lines | experimental (cell lines) | [18] |
Dubrowinskaja (2013) | NEFH | NEFH | Type IV intermediate filament protein | Anti—VEGF agents | Cell lines, patient tissues | experimental (cell lines), cohort (tissues) | [19] |
Choueiri (2013) | VHL | VHL | VHL-HIF pathway | Pazopanib | patient tissues | cohort (tissues) | [20] |
Weygant (2014) | DCLK1 | DCLK1 | EMT, stemness regulation | Sunitinib | cell lines, patient tissues, databases | experimental (cell lines), cross-sectional (tissues) | [21] |
Peters (2014) | CST6, LAD1 | CST6, LAD1 | CST6 (cysteine protease inhibitor), LAD (stability of the epithelial–mesenchymal interaction) | sunitinib, sorafenib, axitinib, bevacizumab | patient tissues | cohort (tissues) | [22] |
Motzer (2014) | VHL | VHL | VHL-HIF pathway | Sunitinib | patient tissues | cohort (tissues) | [23] |
Ponnusamy (2015) | MSH2 | MSH2 | MMR-dependent apoptosis | doxorubicin, cisplatin | cell lines | experimental (cell lines) | [24] |
Kim (2015) | FLT1, KDR | FLT1, KDR | VEGF-VEGFR signaling | Bevacizumab, sunitinib, axitinib, anti-FLT1 peptide, anti-KDR antibody | cell lines, patient tissues | experimental (cell lines), cohort (tissues) | [25] |
Stewart (2015) | VHL | VHL | VHL-HIF pathway | Sunitinib | patient tissues | case-control (tissues) | [26] |
Liu (2015) | ASC/TMS1 | PYCARD | Caspase-9 dependent apoptosis | doxorubicin, etoposide | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [27] |
Nogales (2015) | SLFN11 | SLFN11 | Inhibition of DNA replication in response to DNA damage | Cisplatin, carboplatin | cell lines | experimental (cell lines) | [28] |
Beuselinck (2015) | Multiple genes | Respective pathways | Sunitinib | patient tissues | cohort (tissues) | [29] | |
Liu (2016) | OCT2 | SLC22A2 | Polyspecific organic cation transporter | Oxaliplatin | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [30] |
Zhou (2016) | DAB2IP | DAB2IP | Ras -GTPase activation | mTOR inhibitors | cell lines, patient tissues | experimental (cell lines), cohort(tissues) | [31] |
Winter (2016) | Multiple pharmacogenes | Respective pathways | Cisplatin | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [32] | |
Pompas-Veganzones (2016) | SYNPO2 | SYNPO2 | Actin-binding and actin -bunding activity | Antiangiogenic agents | patient tissues | cohort (tissues) | [33] |
Wang (2017) | ASPP1 | ASPP1 | Apoptotic stimulation of P53 protein | 5-FU | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [34] |
Verbiest (2018) | Multiple genes | Respective pathways | Pazopanib | patients tissues | cohort (tissues) | [35] | |
Lei (2018) | LIFR | LIFR | Signal transduction of the IL-6 | Verteporfin, PHA—665752, PF—2341066 | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [36] |
Kammerer (2018) | VHL | VHL | VHL-HIF pathway | Sunitinib | patient tissues | case-control (tissues) | [37] |
Li (2019) | PON1 | PON1 | Ca2+-dependent high-density lipoprotein” | Sunitinib | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [38] |
Zhao (2019) | QPCT | QPCT | Posttranslational protein modification | Sunitinib | cell lines, patient tissues | experimental (cell lines), cohort (tissues) | [39] |
De Cubas (2020) | Transposable elements (TE) | Endogenous retroviruses activating antiviral signaling | PD-1/PD-L1 | cell lines, patient tissues | experimental (cell lines), cohort (tissues) | [40] | |
Miyakuni (2021) | UQCRH | UQCRH | Mitochondrial complex III component | Everolimus | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [41] |
Klümper (2021) | CTLA4 | CTLA4 | Immune checkpoint receptor | Immune checkpoint inhibitors | patient tissues | cohort (tissues) | [42] |
Ye (2022) | TCAIM | TCAIM | Priming capacity and activation of T cells | Sunitinib | cell lines, patient tissues | experimental (cell lines), cross-sectional (tissues) | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koudonas, A.; Dimitriadis, G.; Anastasiadis, A.; Papaioannou, M. DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review. Epigenomes 2024, 8, 28. https://doi.org/10.3390/epigenomes8030028
Koudonas A, Dimitriadis G, Anastasiadis A, Papaioannou M. DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review. Epigenomes. 2024; 8(3):28. https://doi.org/10.3390/epigenomes8030028
Chicago/Turabian StyleKoudonas, Antonios, Georgios Dimitriadis, Anastasios Anastasiadis, and Maria Papaioannou. 2024. "DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review" Epigenomes 8, no. 3: 28. https://doi.org/10.3390/epigenomes8030028
APA StyleKoudonas, A., Dimitriadis, G., Anastasiadis, A., & Papaioannou, M. (2024). DNA Methylation as Drug Sensitivity Marker in RCC: A Systematic Review. Epigenomes, 8(3), 28. https://doi.org/10.3390/epigenomes8030028