Retrotransposons and Diabetes Mellitus
Abstract
:1. Introduction
2. Retrotransposons (LINE-1 and Alu)
2.1. Structure
2.2. Function
2.3. Biological Role—Clinical Significance
2.4. Methods for Methylation Analysis and Measure
2.5. Correlation with Diseases
3. Methylation of Retrotransposons (LINE-1 and Alu) and Diabetes Mellitus
3.1. LINE-1 Methylation, Glucose Metabolism and DM
Reference/Year of Publication | Type/Duration of Study | Subjects | Biological Sample Used | Method/Area of Research | Main Findings |
---|---|---|---|---|---|
Martín-Núñez GM et al., 2014 [78] | Prospective cohort intervention study (exercise, and Mediterranean diet) 1 year | 310 subjects: (a) 155 with a pre-existing carbohydrate metabolism disorder (IFG, IGT or T2D) and improved glycemic status after 1 year (b) 155 subjects whose glycemic status did not change or worsened after one year | WBC | LINE-1 DNAm was quantified by pyrosequencing | Subjects whose carbohydrate metabolism status did not improve showed lower levels of global LINE-1 DNA methylation. LINE-1 DNAm was linked with the risk of metabolic status worsening independent of other classic risk factors. |
Malipatil et al., 2018 [79] | Longitudinal T2D cohort study 14 years (2002–2016) | 794 T2D patients (60% M/40% W) | PB samples | Pyrosequencing (QIAGEN PyroMark Q96 MD pyrosequencer)/quantification of percentage LINE-1 DNAm | Increase in LINE-1 DNAm status was associated with reduction of specific metabolic markers in T2D (BP, BMI, eGFR, CHOL/HDL). No significant association with HbA1c. |
Wu et al., 2017 [13] | Case-control study | 205 T2D patients and 213 healthy controls | WBC | LINE-1 methylation was measured by quantitative methylation-specific PCR (qMSP) | LINE-1 was significantly hypermethylated in T2D patients. |
Pearce et al., 2012 [80] | Case-control study | 228 individuals (aged 49–51 years) with risk factors for T2D and CHD | PB samples | Pyrosequencing (PyroMark MD Pyrosequencer Qiagen, UK)/quantification of percentage LINE-1 DNAm | Positive associations between log-transformed LINE-1 DNAm and fasting glucose, TCHOL, TRG, and LDL. Negative association between log-transformed LINE-1 methylation and HDL and HDL:LDL ratio. |
Wei et al., 2014 [81] | Case-control study | 334 cases with CHD and 788 healthy controls | WBC | DNAm was estimated by LINE-1 repeats using bisulfite pyrosequencing | Reduced LINE-1 methylation was associated with diagnosis of diabetes, aging, and increased risk of CHD. |
Martín-Núñez GM et al., 2017 [82] | Bariatric surgery intervention (BS) | 60 patients (30 nondiabetic/30 with diabetes and severe obesity | WBC | LINE-1 DNAm was quantified by pyrosequencing | 6 months after BS, no differences in LINE-1 methylation over time in the 2 groups (with or without diabetes). LINE-1 methylation was positively associated with body weight at baseline. |
Remely et al., 2013 [83] | Controlled intervention: (GLP-1R agonists for T2D and nutritional counseling) 4 months | (1)14 obese individuals (OC) with no established insulin resistance, (2) 24 insulin-dependent T2D patients, and (3) 18 controls (normal weight) | WBC | Bisulfite conversion and Pyrosequencing | LINE-1 methylation was similar between the groups or the time points. |
Turcot et al., 2012 [85] | Cross-sectional study | 186 subjects (34 M and 152 F) Group 1: Without metabolic syndrome (MS) (14 M and 84 F) Group 2: With MS (20 M and 68 F) | Visceral adipose tissue cells | LINE-1 DNAm was quantified by pyrosequencing | LINE-1 methylation was negatively associated with fasting glucose levels, MS, and diastolic BP. LINE-1 hypomethylation was strongly associated with the increased risk of MS in the presence of obesity. |
Carraro et al., 2016 [12] | Cross-sectional study | 40 subjects (9 M and 31 F), BMI: 22.4 ± 3.4 kg/m2 | PBMC | The quantitative analysis of LINE-1 and 3 gene promoters was determined after bisulfite treatment in a 7900HT Fast Real-Time PCR System | LINE-1 hypermethylation was positively associated with insulin resistance and markers of adiposity (BMI and WC). |
3.2. ALU Methylation and DM
Reference/Year of Publication | Type of Study | Subjects | Biological Sample Used | Method/Area of Research | Main Findings |
---|---|---|---|---|---|
Yasin et al., 2019 [103] | Case-control study | 76 DM patients (26 with T1D and 50 with T2D) and 60 aged-matched healthy individuals | PB samples | DNA extraction. Alu fragment was amplified using PCR. | Significant protective effect of the Alu−/− genotype in the tPA gene against DM. |
Walid et al., 2021 [104] | Case-control study | 277 subjects (100 diabetic patients without DR, 82 diabetic patients with DR, and 95 healthy controls) | PB samples | DNA extraction. Alu repetitive elements were examined by PCR. | Alu element polymorphism did not affect the age of onset of diabetes in patients with or without DR. |
Katsanou et al., 2023 [64] | Case-control study | 36 patients with T1D and 29 healthy controls | PB samples | DNA extraction. DNAm levels and patterns of Alu were investigated by using the Alu-COBRA. | Total Alu methylation rate (mC) was similar between patients with T1D and controls. Patients with T1D had higher levels of the partial Alu methylation pattern (mCuC + uCmC). This pattern was positively associated with HbA1c and negatively with the age at diagnosis. |
Thongsroy et al., 2023 [51] | Case-control study | 203 subjects in 3 groups (56 normal controls, 64 pre-DM patients, and 83 T2D patients) | WBC | DNA extraction and Alu COBRA analysis. | Alu methylation in T2D patients progressively decreases with increasing HbA1c levels. |
Thongsroy et al., 2017 [77] | Case-control study | 240 subjects in 3 groups (80 normal controls, 80 with pre-DM, and 80 with T2D) | WBC | DNA extraction and Alu COBRA analysis. | In the DM group, Alu hypomethylation was directly associated with high FBS, HbA1C and BP. |
4. Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sar, P.; Dalai, S. CRISPR/Cas9 in epigenetics studies of health and disease. Prog. Mol. Biol. Transl. Sci. 2021, 181, 309–343. [Google Scholar] [CrossRef] [PubMed]
- Perera, B.P.U.; Faulk, C.; Svoboda, L.K.; Goodrich, J.M.; Dolinoy, D.C. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 2020, 61, 176–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jerram, S.T.; Dang, M.N.; Leslie, R.D. The Role of Epigenetics in Type 1 Diabetes. Curr. Diabetes Rep. 2017, 17, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akil, A.A.; Jerman, L.F.; Yassin, E.; Padmajeya, S.S.; Al-Kurbi, A.; Fakhro, K.A. Reading between the (Genetic) Lines: How Epigenetics is Unlocking Novel Therapies for Type 1 Diabetes. Cells 2020, 9, 2403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Čugalj Kern, B.; Trebušak Podkrajšek, K.; Kovač, J.; Šket, R.; Jenko Bizjan, B.; Tesovnik, T.; Debeljak, M.; Battelino, T.; Bratina, N. The Role of Epigenetic Modifications in Late Complications in Type 1 Diabetes. Genes 2022, 13, 705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angeloni, A.; Bogdanovic, O. Enhancer DNA methylation: Implications for gene regulation. Essays Biochem. 2019, 63, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.L.; Bressan, J.; Peluzio, M.D.C.G.; Hermsdorff, H.H.M. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J. Am. Coll. Nutr. 2019, 38, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.R.; Doucet, A.J.; Kopera, H.C.; Moldovan, J.B.; Garcia-Perez, J.L.; Moran, J.V. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol. Spectr. 2015, 3, MDNA3-0061-2014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hancks, D.C.; Kazazian, H.H., Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 2016, 7, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Štangar, A.; Kovač, J.; Šket, R.; Tesovnik, T.; Zajec, A.; Čugalj Kern, B.; Jenko Bizjan, B.; Battelino, T.; Dovč, K. Contribution of Retrotransposons to the Pathogenesis of Type 1 Diabetes and Challenges in Analysis Methods. Int. J. Mol. Sci. 2023, 24, 3104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muka, T.; Koromani, F.; Portilla, E.; O’Connor, A.; Bramer, W.M.; Troup, J.; Chowdhury, R.; Dehghan, A.; Franco, O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016, 212, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Carraro, J.C.; Mansego, M.L.; Milagro, F.I.; Chaves, L.O.; Vidigal, F.C.; Bressan, J.; Martínez, J.A. LINE-1 and inflammatory gene methylation levels are early biomarkers of metabolic changes: Association with adiposity. Biomarkers 2016, 21, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cui, W.; Zhang, D.; Wu, W.; Yang, Z. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 2017, 8, 73964–73973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kazazian, H.H., Jr.; Moran, J.V. Mobile DNA in Health and Disease. N. Engl. J. Med. 2017, 377, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.E.; Bennett, E.A.; Iskow, R.C.; Devine, S.E. Which transposable elements are active in the human genome? Trends Genet. 2007, 23, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Sae-Lee, C.; Biasi, J.; Robinson, N.; Barrow, T.M.; Mathers, J.C.; Koutsidis, G.; Byun, H.M. DNA methylation patterns of LINE-1 and Alu for pre-symptomatic dementia in type 2 diabetes. PLoS ONE 2020, 15, e0234578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beck, C.R.; Collier, P.; Macfarlane, C.; Malig, M.; Kidd, J.M.; Eichler, E.E.; Badge, R.M.; Moran, J.V. LINE-1 retrotransposition activity in human genomes. Cell 2010, 141, 1159–1170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McLaughlin, R.N., Jr. Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology. PLoS Biol. 2018, 16, e2005470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Du, J.; Wang, Y.; Wang, Q.; Wang, S.; Zhao, K. BST2 Suppresses LINE-1 Retrotransposition by Reducing the Promoter Activity of LINE-1 5’ UTR. J. Virol. 2022, 96, e0161021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faulkner, G.J.; Garcia-Perez, J.L. L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet. 2017, 33, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.F.; Tóth, G.; Riggs, A.D.; Jurka, J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 1995, 246, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.O.; Pratt, H.; Weng, Z. Investigating the Potential Roles of SINEs in the Human Genome. Annu. Rev. Genom. Hum. Genet. 2021, 22, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Ewing, A.D. Transposable element detection from whole genome sequence data. Mob. DNA 2015, 6, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deininger, P. Alu elements: Know the SINEs. Genome Biol. 2011, 12, 236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappalardo, X.G.; Barra, V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021, 14, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blinov, V.M.; Zverev, V.V.; Krasnov, G.S.; Filatov, F.P.; Shargunov, A.V. Viral component of the human genome. Mol. Biol. 2017, 51, 240–250. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Autio, M.I.; Bin Amin, T.; Perrin, A.; Wong, J.Y.; Foo, R.S.; Prabhakar, S. Transposable elements that have recently been mobile in the human genome. BMC Genom. 2021, 22, 789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warkocki, Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett. 2023, 597, 380–406. [Google Scholar] [CrossRef] [PubMed]
- Tam, P.L.F.; Leung, D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int. J. Mol. Sci. 2023, 24, 16418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Zhang, C.; Wang, Y.; Liu, X.; Zhang, Z. Enhancer RNA (eRNA) in Human Diseases. Int. J. Mol. Sci. 2022, 23, 11582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loubalova, Z.; Konstantinidou, P.; Haase, A.D. Themes and variations on piRNA-guided transposon control. Mob. DNA 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.; Su, W.; Chung, O.W.; Tracy, L.; Wang, L.; Ramsden, D.A.; Zhang, Z.Z.Z. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 2023, 620, 218–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fueyo, R.; Judd, J.; Feschotte, C.; Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 2022, 23, 481–497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Payer, L.M.; Burns, K.H. Transposable elements in human genetic disease. Nat. Rev. Genet. 2019, 20, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; Chang, L.; Li, T.; Wang, T.; Yin, Y.; Zhan, G.; Han, X.; Zhang, K.; Tao, Y.; Percharde, M.; et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 2021, 31, 613–630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, A.S.; Doshi, K.D.; Choi, S.W.; Mason, J.B.; Mannari, R.K.; Gharybian, V.; Luna, R.; Rashid, A.; Shen, L.; Estecio, M.R.; et al. DNA methylation changes after 5-aza-2’-deoxycytidine therapy in patients with leukemia. Cancer Res. 2006, 66, 5495–5503. [Google Scholar] [CrossRef] [PubMed]
- Erichsen, L.; Beermann, A.; Arauzo-Bravo, M.J.; Hassan, M.; Dkhil, M.A.; Al-Quraishy, S.; Hafiz, T.A.; Fischer, J.C.; Santourlidis, S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018, 25, 1220–1226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, S.; Pociot, F. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes? Genes 2015, 6, 577–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buj, R.; Mallona, I.; Díez-Villanueva, A.; Barrera, V.; Mauricio, D.; Puig-Domingo, M.; Reverter, J.L.; Matias-Guiu, X.; Azuara, D.; Ramírez, J.L.; et al. Quantification of unmethylated Alu (QUAlu): A tool to assess global hypomethylation in routine clinical samples. Oncotarget 2016, 7, 10536–10546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perng, W.; Nakiwala, D.; Goodrich, J.M. What Happens In Utero Does Not Stay In Utero: A Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr. Environ. Health Rep. 2023, 10, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2021, 187, 28–43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Rohde, C.; Tierling, S.; Stamerjohanns, H.; Reinhardt, R.; Walter, J.; Jeltsch, A. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol. 2009, 507, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Eads, C.A.; Danenberg, K.D.; Kawakami, K.; Saltz, L.B.; Blake, C.; Shibata, D.; Danenberg, P.V.; Laird, P.W. MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28, E32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Busato, F.; Dejeux, E.; El Abdalaoui, H.; Gut, I.G.; Tost, J. Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®. Methods Mol. Biol. 2018, 1708, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Wendt, J.; Rosenbaum, H.; Richmond, T.A.; Jeddeloh, J.A.; Burgess, D.L. Targeted Bisulfite Sequencing Using the SeqCap Epi Enrichment System. Methods Mol. Biol. 2018, 1708, 383–405. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.J.; Tatovic, D.; Thayer, T.C.; Dayan, C.M. Insights From Single Cell RNA Sequencing Into the Immunology of Type 1 Diabetes- Cell Phenotypes and Antigen Specificity. Front. Immunol. 2021, 12, 751701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, L.; Cao, C.; Ji, L.; Cai, Z.; Wang, D.; Ye, R.; Chen, J.; Yu, X.; Zhou, J.; Bai, Z.; et al. Complementary Alu sequences mediate enhancer-promoter selectivity. Nature 2023, 619, 868–875, Erratum in Nature 2023, 620, E26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, L.; Grover, D.; Azrak, S.; Batzer, M.A.; Liang, P. dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans. Hum. Mutat. 2006, 27, 323–329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Genetic Information Research Institute. Available online: https://www.girinst.org/ (accessed on 19 August 2022).
- Thongsroy, J.; Mutirangura, A. Decreased Alu methylation in type 2 diabetes mellitus patients increases HbA1c levels. J. Clin. Lab. Anal. 2023, 37, e24966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sakashita, A.; Kitano, T.; Ishizu, H.; Guo, Y.; Masuda, H.; Ariura, M.; Murano, K.; Siomi, H. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat. Genet. 2023, 55, 484–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saul, D.; Kosinsky, R.L. Epigenetics of Aging and Aging-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tam, O.H.; Ostrow, L.W.; Gale Hammell, M. Diseases of the nERVous system: Retrotransposon activity in neurodegenerative disease. Mob. DNA 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jönsson, M.E.; Ludvik Brattås, P.; Gustafsson, C.; Petri, R.; Yudovich, D.; Pircs, K.; Verschuere, S.; Madsen, S.; Hansson, J.; Larsson, J.; et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat. Commun. 2019, 10, 3182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garza, R.; Atacho, D.A.M.; Adami, A.; Gerdes, P.; Vinod, M.; Hsieh, P.; Karlsson, O.; Horvath, V.; Johansson, P.A.; Pandiloski, N.; et al. LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. Sci. Adv. 2023, 9, eadh9543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Modenini, G.; Abondio, P.; Guffanti, G.; Boattini, A.; Macciardi, F. Evolutionarily recent retrotransposons contribute to schizophrenia. Transl. Psychiatry 2023, 13, 181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei, X.; Zhang, B.; Zhao, M.; Lu, Q. An update on epigenetic regulation in autoimmune diseases. J. Transl. Autoimmun. 2022, 5, 100176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Starskaia, I.; Laajala, E.; Grönroos, T.; Härkönen, T.; Junttila, S.; Kattelus, R.; Kallionpää, H.; Laiho, A.; Suni, V.; Tillmann, V.; et al. Early DNA methylation changes in children developing beta cell autoimmunity at a young age. Diabetologia 2022, 65, 844–860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jang, H.S.; Shah, N.M.; Du, A.Y.; Dailey, Z.Z.; Pehrsson, E.C.; Godoy, P.M.; Zhang, D.; Li, D.; Xing, X.; Kim, S.; et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 2019, 51, 611–617, Erratum in Nat. Genet. 2019, 51, 920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Samblas, M.; Milagro, F.I.; Martínez, A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019, 14, 421–444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Z.; Chang, C.; Huang, G.; Zhou, Z. The Role of Epigenetics in Type 1 Diabetes. Adv. Exp. Med. Biol. 2020, 1253, 223–257. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Rönn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsanou, A.; Kostoulas, C.A.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Alu Methylation Patterns in Type 1 Diabetes: A Case-Control Study. Genes 2023, 14, 2149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, R.G.; Mychaleckyj, J.C.; Onengut-Gumuscu, S.; Orchard, T.J.; Costacou, T. TXNIP DNA methylation is associated with glycemic control over 28 years in type 1 diabetes: Findings from the Pittsburgh Epidemiology of Diabetes Complications (EDC) study. BMJ Open Diabetes Res. Care 2023, 11, e003068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laajala, E.; Kalim, U.U.; Grönroos, T.; Rasool, O.; Halla-Aho, V.; Konki, M.; Kattelus, R.; Mykkänen, J.; Nurmio, M.; Vähä-Mäkilä, M.; et al. Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia 2022, 65, 1534–1540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, R.K.; Vanderlinden, L.A.; Dong, F.; Carry, P.M.; Seifert, J.; Waugh, K.; Shorrosh, H.; Fingerlin, T.; Frohnert, B.I.; Yang, I.V.; et al. Longitudinal DNA methylation differences precede type 1 diabetes. Sci. Rep. 2020, 10, 3721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thongsroy, J.; Mutirangura, A. The association between Alu hypomethylation and the severity of hypertension. PLoS ONE 2022, 17, e0270004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerna, M. Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. Int. J. Mol. Sci. 2019, 21, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Z.; Miao, F.; Braffett, B.H.; Lachin, J.M.; Zhang, L.; Wu, X.; Roshandel, D.; Carless, M.; Li, X.A.; DCCT/EDIC Study Group; et al. Natarajan R. DNA methylation mediates development of HbA1c-associated complications in type 1 diabetes. Nat. Metab. 2020, 2, 744–762. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, D.; Chen, Z.; Canty, A.J.; Bull, S.B.; Natarajan, R.; Paterson, A.D.; DCCT/EDIC Research Group. DNA methylation age calculators reveal association with diabetic neuropathy in type 1 diabetes. Clin. Epigenetics 2020, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Smyth, L.J.; Kilner, J.; Nair, V.; Liu, H.; Brennan, E.; Kerr, K.; Sandholm, N.; Cole, J.; Dahlström, E.; Syreeni, A.; et al. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: An exploratory study. Clin. Epigenetics 2021, 13, 99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swan, E.J.; Maxwell, A.P.; McKnight, A.J. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with Type 1 diabetes. Diabet. Med. 2015, 32, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Han, K.; Liang, P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life 2021, 11, 118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Çalışkan, Z.; Mutlu, T.; Güven, M.; Tunçdemir, M.; Niyazioğlu, M.; Hacioglu, Y.; Dincer, Y. SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 2018, 642, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, A.; Flores, R.R.; Robbins, P.D.; Niedernhofer, L.J. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021, 162, bqab136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thongsroy, J.; Patchsung, M.; Mutirangura, A. The association between Alu hypomethylation and severity of type 2 diabetes mellitus. Clin. Epigenetics 2017, 9, 93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín-Núñez, G.M.; Rubio-Martín, E.; Cabrera-Mulero, R.; Rojo-Martínez, G.; Olveira, G.; Valdés, S.; Soriguer, F.; Castaño, L.; Morcillo, S. Type 2 diabetes mellitus in relation to global LINE-1 DNA methylation in peripheral blood: A cohort study. Epigenetics 2014, 9, 1322–1328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malipatil, N.; Lunt, M.; Narayanan, R.P.; Siddals, K.; Cortés Moreno, G.Y.; Gibson, M.J.; Gu, H.F.; Heald, A.H.; Donn, R.P. Assessment of global long interspersed nucleotide element-1 (LINE-1) DNA methylation in a longitudinal cohort of type 2 diabetes mellitus (T2DM) individuals. Int. J. Clin. Pract. 2018, 73, e13270. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.S.; McConnell, J.C.; Potter, C.; Barrett, L.M.; Parker, L.; Mathers, J.C.; Relton, C.L. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int. J. Epidemiol. 2012, 41, 210–217, Erratum in Int. J. Epidemiol. 2013, 42, 919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, L.; Liu, S.; Su, Z.; Cheng, R.; Bai, X.; Li, X. LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. Arq. Bras. Cardiol. 2014, 102, 481–488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martín-Núñez, G.M.; Cabrera-Mulero, A.; Alcaide-Torres, J.; García-Fuentes, E.; Tinahones, F.J.; Morcillo, S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg. Obes. Relat. Dis. 2017, 13, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Remely, M.; Aumueller, E.; Merold, C.; Dworzak, S.; Hippe, B.; Zanner, J.; Pointner, A.; Brath, H.; Haslberger, A.G. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 2014, 537, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.; Bressler, J.P.; Moran, T.H.; Pollak, J.S.; Hirsch, A.G.; Bailey-Davis, L.; Glass, T.A.; Schwartz, B.S. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin. Epigenetics 2017, 9, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turcot, V.; Tchernof, A.; Deshaies, Y.; Pérusse, L.; Bélisle, A.; Marceau, S.; Biron, S.; Lescelleur, O.; Biertho, L.; Vohl, M.C. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin. Epigenetics 2012, 4, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piyathilake, C.J.; Badiga, S.; Alvarez, R.D.; Partridge, E.E.; Johanning, G.L. A lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR in the presence of lower concentrations of plasma folate. PLoS ONE 2013, 8, e54544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crujeiras, A.B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F.I.; Navas-Carretero, S.; Carreira, M.C.; Gomez, A.; Hervas, D.; Monteiro, M.P.; Casanueva, F.F.; et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: A genome-wide analysis from non-obese and obese patients. Sci. Rep. 2017, 7, 41903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Lacarte, M.; Milagro, F.I.; Zulet, M.A.; Martinez, J.A.; Mansego, M.L. LINE-1 methylation levels, a biomarker of weight loss in obese subjects, are influenced by dietary antioxidant capacity. Redox Rep. 2016, 21, 67–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A.; MENA Project. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol. Genet. Metab. 2018, 123, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Villamor, E.; Shroff, M.R.; Nettleton, J.A.; Pilsner, J.R.; Liu, Y.; Diez-Roux, A.V. Dietary intake, plasma homocysteine, and repetitive element DNA methylation in the Multi-Ethnic Study of Atherosclerosis (MESA). Nutr. Metab. Cardiovasc. Dis. 2014, 24, 614–622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geisel, J.; Schorr, H.; Heine, G.H.; Bodis, M.; Hübner, U.; Knapp, J.P.; Herrmann, W. Decreased p66Shc promoter methylation in patients with end-stage renal disease. Clin. Chem. Lab. Med. 2007, 45, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Manzardo, A.M.; Butler, M.G. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome. J. Clin. Epigenetics 2016, 2, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cash, H.L.; McGarvey, S.T.; Houseman, E.A.; Marsit, C.J.; Hawley, N.L.; Lambert-Messerlian, G.M.; Viali, S.; Tuitele, J.; Kelsey, K.T. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics 2011, 6, 1257–1264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marques-Rocha, J.L.; Milagro, F.I.; Mansego, M.L.; Mourão, D.M.; Martínez, J.A.; Bressan, J. LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 2016, 11, 49–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duggan, C.; Xiao, L.; Terry, M.B.; McTiernan, A. No effect of weight loss on LINE-1 methylation levels in peripheral blood leukocytes from postmenopausal overweight women. Obesity 2014, 22, 2091–2096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicoletti, C.F.; Nonino, C.B.; de Oliveira, B.A.; Pinhel, M.A.; Mansego, M.L.; Milagro, F.I.; Zulet, M.A.; Martinez, J.A. DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery. Obes. Surg. 2016, 26, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Wright, R.; Bollati, V.; Litonjua, A.; Zanobetti, A.; Tarantini, L.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 2010, 21, 819–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, R.T.; Hsi, E.; Lin, H.F.; Liao, Y.C.; Wang, Y.S.; Juo, S.H. LINE-1 methylation is associated with an increased risk of ischemic stroke in men. Curr. Neurovascular Res. 2014, 11, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Long, T.I.; Arakawa, K.; Wang, R.; Yu, M.C.; Laird, P.W. DNA methylation as a biomarker for cardiovascular disease risk. PLoS ONE 2010, 5, e9692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, W.; Zheng, B.; Guo, D.; Cai, Z.; Wang, Y. Association of AluYb8 insertion/deletion polymorphism in the MUTYH gene with mtDNA maintain in the type 2 diabetes mellitus patients. Mol. Cell Endocrinol. 2015, 409, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Khetan, S.; Kales, S.; Kursawe, R.; Jillette, A.; Ulirsch, J.C.; Reilly, S.K.; Ucar, D.; Tewhey, R.; Stitzel, M.L. Functional characterization of T2D-associated SNP effects on baseline and ER stress-responsive β cell transcriptional activation. Nat. Commun. 2021, 12, 5242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansen, G.T.; Sobreira, D.R.; Weber, Z.T.; Thornburg, A.G.; Aneas, I.; Zhang, L.; Sakabe, N.J.; Joslin, A.C.; Haddad, G.A.; Strobel, S.M.; et al. Genetics of sexually dimorphic adipose distribution in humans. Nat. Genet. 2023, 55, 461–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yasin, S.R.; AlHawari, H.H.; Alassaf, A.A.; Khadra, M.M.; Al-Mazaydeh, Z.A.; Al-Emerieen, A.F.; Tahtamouni, L.H. Alu DNA Polymorphism of Human Tissue Plasminogen Activator (tPA) Gene in Diabetic Jordanian Patients. Iran. Biomed. J. 2019, 23, 423–428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walid, A.D.; Al-Bdour, M.D.; El-Khateeb, M. Lack of relationship between Alu repetitive elements in angiotensin converting enzyme and the severity of diabetic retinopathy. J. Med. Biochem. 2021, 40, 302–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, W.; Wang, W.H.; Azadzoi, K.M.; Dai, P.; Wang, Q.; Sun, J.B.; Zhang, W.T.; Shu, Y.; Yang, J.H.; Yan, Z. Alu RNA accumulation in hyperglycemia augments oxidative stress and impairs eNOS and SOD2 expression in endothelial cells. Mol. Cell Endocrinol. 2016, 426, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Yasom, S.; Khumsri, W.; Boonsongserm, P.; Kitkumthorn, N.; Ruangvejvorachai, P.; Sooksamran, A.; Wanotayan, R.; Mutirangura, A. B1 siRNA Increases de novo DNA Methylation of B1 Elements and Promotes Wound Healing in Diabetic Rats. Front. Cell Dev. Biol. 2022, 9, 802024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mutirangura, A. Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases? Epigenomics 2019, 11, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsanou, A.; Kostoulas, C.; Liberopoulos, E.; Tsatsoulis, A.; Georgiou, I.; Tigas, S. Retrotransposons and Diabetes Mellitus. Epigenomes 2024, 8, 35. https://doi.org/10.3390/epigenomes8030035
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. Epigenomes. 2024; 8(3):35. https://doi.org/10.3390/epigenomes8030035
Chicago/Turabian StyleKatsanou, Andromachi, Charilaos Kostoulas, Evangelos Liberopoulos, Agathocles Tsatsoulis, Ioannis Georgiou, and Stelios Tigas. 2024. "Retrotransposons and Diabetes Mellitus" Epigenomes 8, no. 3: 35. https://doi.org/10.3390/epigenomes8030035
APA StyleKatsanou, A., Kostoulas, C., Liberopoulos, E., Tsatsoulis, A., Georgiou, I., & Tigas, S. (2024). Retrotransposons and Diabetes Mellitus. Epigenomes, 8(3), 35. https://doi.org/10.3390/epigenomes8030035