Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies
Abstract
:1. Introduction
2. Epigenetic Mechanisms in Infertility
2.1. DNA Methylation
2.1.1. DNA Methylation in Male Infertility
2.1.2. DNA Methylation in Female Infertility
2.2. Histone Modifications
2.2.1. Histone Modifications in Male Infertility
2.2.2. Histone Modifications in Female Infertility
2.3. Non-Coding RNAs
2.3.1. Small ncRNAs
2.3.2. Long ncRNAs
3. Environmental Influences on Epigenetics and Infertility
3.1. Environmental Pollutants
3.1.1. Endocrine-Disrupting Chemicals
3.1.2. Heavy Metals
3.2. Diet and Nutrition
3.3. Lifestyle Factors
4. Epigenetics and Assisted Reproductive Technologies (ART)
Transgenerational Inheritance, Epigenetic Reprogramming, and Genomic Imprinting
5. Diagnostic and Therapeutic Implications
5.1. Current Diagnostic Methods for Detecting Epigenetic Changes
5.2. Potential Therapeutic Strategies Targeting Epigenetic Mechanisms
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.L.; Schorge, J.O.; Bradshaw, K.D.; Halvorson, L.M.; Schaffer, J.I.; Corton, M.M. Evaluation of the Infertile Couple. In Williams Gynecology; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Das, L.; Parbin, S.; Pradhan, N.; Kausar, C.; Patra, S.K. Epigenetics of Reproductive Infertility. Front. Biosci. Schol. Ed. 2017, 9, 509–535. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Tollefsbol, T.O. Gene-Environment Interactions and Epigenetic Basis of Human Diseases. Curr. Issues Mol. Biol. 2008, 10, 25–36. [Google Scholar] [CrossRef]
- Walker, M.H.; Tobler, K.J. Female Infertility. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front. Cell Dev. Biol. 2021, 9, 689624. [Google Scholar] [CrossRef] [PubMed]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Pisarska, M.D.; Chan, J.L.; Lawrenson, K.; Gonzalez, T.L.; Wang, E.T. Genetics and Epigenetics of Infertility and Treatments on Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 1871–1886. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, A.K.; Zhang, P.; Cardoso, M.C. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front. Genet. 2016, 7, 115. [Google Scholar] [CrossRef]
- Holliday, R. DNA Methylation and Epigenetic Mechanisms. Cell Biophys. 1989, 15, 15–20. [Google Scholar] [CrossRef]
- Guerrero-Bosagna, C.; Skinner, M.K. Environmentally Induced Epigenetic Transgenerational Inheritance of Male Infertility. Curr. Opin. Genet. Dev. 2014, 26, 79–88. [Google Scholar] [CrossRef]
- Botezatu, A.; Socolov, R.; Socolov, D.; Iancu, I.V.; Anton, G. Methylation Pattern of Methylene Tetrahydrofolate Reductase and Small Nuclear Ribonucleoprotein Polypeptide N Promoters in Oligoasthenospermia: A Case-Control Study. Reprod. Biomed. Online 2014, 28, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, D.; Sibani, S.; Rozen, R. Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR) and Overview of Mutations/Polymorphisms. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Shacfe, G.; Turko, R.; Syed, H.H.; Masoud, I.; Tahmaz, Y.; Samhan, L.M.; Alkattan, K.; Shafqat, A.; Yaqinuddin, A. A DNA Methylation Perspective on Infertility. Genes 2023, 14, 2132. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Pan, F.; Yang, J.; Fu, Z.; Lu, Y.; Wu, X.; Han, X.; Chen, M.; Lu, C.; Xia, Y.; et al. Idiopathic Male Infertility Is Strongly Associated with Aberrant DNA Methylation of Imprinted Loci in Sperm: A Case-Control Study. Clin. Epigenet. 2018, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-P.; Hao, C.-L.; Wang, Q.; Yi, X.-M.; Jiang, Z.-S. H19 Gene Methylation Status Is Associated with Male Infertility. Exp. Ther. Med. 2016, 12, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Urdinguio, R.G.; Bayón, G.F.; Dmitrijeva, M.; Toraño, E.G.; Bravo, C.; Fraga, M.F.; Bassas, L.; Larriba, S.; Fernández, A.F. Aberrant DNA Methylation Patterns of Spermatozoa in Men with Unexplained Infertility. Hum. Reprod. 2015, 30, 1014–1028. [Google Scholar] [CrossRef]
- Navarro-Costa, P.; Nogueira, P.; Carvalho, M.; Leal, F.; Cordeiro, I.; Calhaz-Jorge, C.; Gonçalves, J.; Plancha, C.E. Incorrect DNA Methylation of the DAZL Promoter CpG Island Associates with Defective Human Sperm. Hum. Reprod. 2010, 25, 2647–2654. [Google Scholar] [CrossRef]
- Boissonnas, C.C.; Abdalaoui, H.E.; Haelewyn, V.; Fauque, P.; Dupont, J.M.; Gut, I.; Vaiman, D.; Jouannet, P.; Tost, J.; Jammes, H. Specific Epigenetic Alterations of IGF2-H19 Locus in Spermatozoa from Infertile Men. Eur. J. Hum. Genet. 2010, 18, 73–80. [Google Scholar] [CrossRef]
- Uysal, F.; Ozturk, S. The Loss of Global DNA Methylation Due to Decreased DNMT Expression in the Postnatal Mouse Ovaries May Associate with Infertility Emerging during Ovarian Aging. Histochem. Cell Biol. 2020, 154, 301–314. [Google Scholar] [CrossRef]
- Barišić, A.; Kolak, M.; Peterlin, A.; Tul, N.; Gašparović Krpina, M.; Ostojić, S.; Peterlin, B.; Pereza, N. DNMT3B Rs1569686 and Rs2424913 Gene Polymorphisms Are Associated with Positive Family History of Preterm Birth and Smoking Status. Croat. Med. J. 2020, 61, 8–17. [Google Scholar] [CrossRef]
- Tang, Y.; Gan, H.; Wang, B.; Wang, X.; Li, M.; Yang, Q.; Geng, M.; Zhu, P.; Shao, S.; Tao, F. Mediating Effects of DNA Methylation in the Association between Sleep Quality and Infertility among Women of Childbearing Age. BMC Public Health 2023, 23, 1802. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Wang, T.; Gao, H.; Li, W.; Liu, C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front. Genet. 2019, 10, 962. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, M.; Simeone, A.; Hormanseder, E.; Teperek, M.; Gaggioli, V.; O’Doherty, A.; Falk, E.; Sporniak, M.; D’Santos, C.; Franklin, V.N.R.; et al. Epigenetic Homogeneity in Histone Methylation Underlies Sperm Programming for Embryonic Transcription. Nat. Commun. 2020, 11, 3491. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, S.S.; Nix, D.A.; Hammoud, A.O.; Gibson, M.; Cairns, B.R.; Carrell, D.T. Genome-Wide Analysis Identifies Changes in Histone Retention and Epigenetic Modifications at Developmental and Imprinted Gene Loci in the Sperm of Infertile Men. Hum. Reprod. 2011, 26, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Tateishi, K.; Zhang, Y. Histone Demethylase JHDM2A Is Involved in Male Infertility and Obesity. J. Androl. 2010, 31, 75–78. [Google Scholar] [CrossRef]
- Navarro-Costa, P.; McCarthy, A.; Prudêncio, P.; Greer, C.; Guilgur, L.G.; Becker, J.D.; Secombe, J.; Rangan, P.; Martinho, R.G. Early Programming of the Oocyte Epigenome Temporally Controls Late Prophase I Transcription and Chromatin Remodelling. Nat. Commun. 2016, 7, 12331. [Google Scholar] [CrossRef]
- Bogliotti, Y.S.; Ross, P.J. Mechanisms of Histone H3 Lysine 27 Trimethylation Remodeling during Early Mammalian Development. Epigenetics 2012, 7, 976–981. [Google Scholar] [CrossRef]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution-Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, X.; Huang, L. RNA Interference Technology. Compr. Biotechnol. 2019, 5, 560–575. [Google Scholar] [CrossRef]
- Wei, J.-W.; Huang, K.; Yang, C.; Kang, C.-S. Non-Coding RNAs as Regulators in Epigenetics (Review). Oncol. Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, C.; Chen, X.; Yao, B.; Yang, C.; Zhu, C.; Li, L.; Wang, J.; Li, X.; Shao, Y.; et al. Altered Profile of Seminal Plasma microRNAs in the Molecular Diagnosis of Male Infertility. Clin. Chem. 2011, 57, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Ovcharenko, D.; Grossmann, R.; Lauková, M.; Mlyncek, M. Identification of microRNAs Controlling Human Ovarian Cell Steroidogenesis via a Genome-Scale Screen. J. Cell. Physiol. 2009, 219, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, P.J. Mammalian piRNAs: Biogenesis, Function, and Mysteries. Spermatogenesis 2014, 4, e27889. [Google Scholar] [CrossRef]
- Gu, A.; Ji, G.; Shi, X.; Long, Y.; Xia, Y.; Song, L.; Wang, S.; Wang, X. Genetic Variants in Piwi-Interacting RNA Pathway Genes Confer Susceptibility to Spermatogenic Failure in a Chinese Population. Hum. Reprod. 2010, 25, 2955–2961. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Kirby, J.A.; Chu, C.; Gou, L.-T. Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021, 9, 1884. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Lei, A.; Zhang, H.; Niu, H.; Li, X.; Zhang, P.; Liao, M.; Lv, Y.; Zhu, Z.; et al. Early Cleavage of Preimplantation Embryos Is Regulated by tRNAGln-TTG–Derived Small RNAs Present in Mature Spermatozoa. J. Biol. Chem. 2020, 295, 10885–10900. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Bahmanpour, S.; Fallahi, J.; Tabei, M.B.; Tabei, S.M.B. The Role of Circular RNAs in Male Infertility and Reproductive Cancers: A Narrative Review. Iran. J. Med. Sci. 2023, 48, 527. [Google Scholar]
- Loda, A.; Heard, E. Xist RNA in Action: Past, Present, and Future. PLoS Genet. 2019, 15, e1008333. [Google Scholar] [CrossRef]
- Dandolo, L.; Monnier, P.; Tost, J. The H19 Locus. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-809633-8. [Google Scholar]
- Peng, Y.; Guo, R.; Shi, B.; Li, D. The Role of Long Non-Coding RNA H19 in Infertility. Cell Death Discov. 2023, 9, 268. [Google Scholar] [CrossRef]
- Arun, G.; Aggarwal, D.; Spector, D.L. MALAT1 Long Non-Coding RNA: Functional Implications. Noncod. RNA 2020, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Asl, A.-J.; Sharifi, M.; Dashti, A.; Dashti, G.R. Relationship between Long Non-Coding RNA MALAT1 and HOTAIR Expression with Sperm Parameters, DNA and Malondialdehyde Levels in Male Infertility. Tissue Cell 2023, 85, 102248. [Google Scholar] [CrossRef]
- Leygue, E. Steroid Receptor RNA Activator (SRA1): Unusual Bifaceted Gene Products with Suspected Relevance to Breast Cancer. Nucl. Recept. Signal 2007, 5, e006. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, R.; Liu, R. Progress in research on imprinted gene associated with male infertility. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2015, 32, 734–738. [Google Scholar] [CrossRef]
- Hamilton, S.; de Cabo, R.; Bernier, M. Maternally Expressed Gene 3 in Metabolic Programming. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194396. [Google Scholar] [CrossRef]
- Vessa, B.; Perlman, B.; McGovern, P.G.; Morelli, S.S. Endocrine Disruptors and Female Fertility: A Review of Pesticide and Plasticizer Effects. F S Rep. 2022, 3, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef]
- Li, Y.; Xie, C.; Murphy, S.K.; Skaar, D.; Nye, M.; Vidal, A.C.; Cecil, K.M.; Dietrich, K.N.; Puga, A.; Jirtle, R.L.; et al. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood. Environ. Health Perspect. 2016, 124, 666–673. [Google Scholar] [CrossRef]
- Massányi, P.; Massányi, M.; Madeddu, R.; Stawarz, R.; Lukáč, N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics 2020, 8, 94. [Google Scholar] [CrossRef]
- Lozano, M.; Yousefi, P.; Broberg, K.; Soler-Blasco, R.; Miyashita, C.; Pesce, G.; Kim, W.J.; Rahman, M.; Bakulski, K.M.; Haug, L.S.; et al. DNA Methylation Changes Associated with Prenatal Mercury Exposure: A Meta-Analysis of Prospective Cohort Studies from PACE Consortium. Environ. Res. 2022, 204, 112093. [Google Scholar] [CrossRef]
- Ikokide, E.J.; Oyagbemi, A.A.; Oyeyemi, M.O. Impacts of Cadmium on Male Fertility: Lessons Learnt so Far. Andrologia 2022, 54, e14516. [Google Scholar] [CrossRef]
- Han, X.; Huang, Q. Environmental Pollutants Exposure and Male Reproductive Toxicity: The Role of Epigenetic Modifications. Toxicology 2021, 456, 152780. [Google Scholar] [CrossRef] [PubMed]
- Okpashi, V.E.; Ebunta, A.F. Predicting the Outcome of Arsenic Toxicity on Exposed Juvenile Male-Humans: A Shift to Infertility. In Arsenic Toxicity: Challenges and Solutions; Kumar, N., Ed.; Springer: Singapore, 2021; pp. 1–25. ISBN 978-981-336-068-6. [Google Scholar]
- Speckmann, B.; Grune, T. Epigenetic Effects of Selenium and Their Implications for Health. Epigenetics 2015, 10, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int. J. Mol. Sci. 2022, 23, 1341. [Google Scholar] [CrossRef]
- Cabler, S.; Agarwal, A.; Flint, M.; Du Plessis, S.S. Obesity: Modern Man’s Fertility Nemesis. Asian J. Androl. 2010, 12, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.M.; Aliani, M. Metabolomics and Fetal Alcohol Spectrum Disorder. Biochem. Cell Biol. 2018, 96, 198–203. [Google Scholar] [CrossRef]
- Balaraman, S.; Tingling, J.D.; Tsai, P.-C.; Miranda, R.C. Dysregulation of microRNA Expression and Function Contributes to the Etiology of Fetal Alcohol Spectrum Disorders. Alcohol. Res. 2013, 35, 18–24. [Google Scholar]
- Akison, L.K.; Moritz, K.M.; Reid, N. Adverse Reproductive Outcomes Associated with Fetal Alcohol Exposure: A Systematic Review. Reproduction 2019, 157, 329–343. [Google Scholar] [CrossRef]
- Zhao, F.; Hong, X.; Wang, W.; Wu, J.; Wang, B. Effects of Physical Activity and Sleep Duration on Fertility: A Systematic Review and Meta-Analysis Based on Prospective Cohort Studies. Front. Public Health 2022, 10, 1029469. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Izquierdo, D.; Torres-Martos, Á.; Baig, A.T.; Aguilera, C.M.; Ruiz-Ojeda, F.J. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022, 10, 126. [Google Scholar] [CrossRef]
- Gudsnuk, K.; Champagne, F.A. Epigenetic Influence of Stress and the Social Environment. ILAR J. 2012, 53, 279–288. [Google Scholar] [CrossRef]
- Lynch, C.D.; Sundaram, R.; Maisog, J.M.; Sweeney, A.M.; Buck Louis, G.M. Preconception Stress Increases the Risk of Infertility: Results from a Couple-Based Prospective Cohort Study—The LIFE Study. Hum. Reprod. 2014, 29, 1067–1075. [Google Scholar] [CrossRef]
- Gameiro, S.; Boivin, J.; Dancet, E.; de Klerk, C.; Emery, M.; Lewis-Jones, C.; Thorn, P.; Van den Broeck, U.; Venetis, C.; Verhaak, C.M.; et al. ESHRE Guideline: Routine Psychosocial Care in Infertility and Medically Assisted Reproduction-a Guide for Fertility Staff. Hum. Reprod. 2015, 30, 2476–2485. [Google Scholar] [CrossRef]
- Nowak, A.L.; Anderson, C.M.; Mackos, A.R.; Neiman, E.; Gillespie, S.L. Stress during Pregnancy and Epigenetic Modifications to Offspring DNA: A Systematic Review of Associations and Implications for Preterm Birth. J. Perinat. Neonatal Nurs. 2020, 34, 134–145. [Google Scholar] [CrossRef]
- Michels, K.A.; Mendola, P.; Schliep, K.C.; Yeung, E.H.; Ye, A.; Dunietz, G.L.; Wactawski-Wende, J.; Kim, K.; Freeman, J.R.; Schisterman, E.F.; et al. The Influences of Sleep Duration, Chronotype, and Nightwork on the Ovarian Cycle. Chronobiol. Int. 2020, 37, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Epigenetic Changes and Assisted Reproductive Technologies. Epigenetics 2020, 15, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Håberg, S.E.; Page, C.M.; Lee, Y.; Nustad, H.E.; Magnus, M.C.; Haftorn, K.L.; Carlsen, E.Ø.; Denault, W.R.P.; Bohlin, J.; Jugessur, A.; et al. DNA Methylation in Newborns Conceived by Assisted Reproductive Technology. Nat. Commun. 2022, 13, 1896. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Ghosh, J.; Mainigi, M.; Turan, N.; Weinerman, R.; Truongcao, M.; Coutifaris, C.; Sapienza, C. DNA Methylation Differences between in Vitro- and in Vivo-Conceived Children Are Associated with ART Procedures Rather than Infertility. Clin. Epigenet. 2015, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Fauque, P.; De Mouzon, J.; Devaux, A.; Epelboin, S.; Gervoise-Boyer, M.-J.; Levy, R.; Valentin, M.; Viot, G.; Bergère, A.; De Vienne, C.; et al. Reproductive Technologies, Female Infertility, and the Risk of Imprinting-Related Disorders. Clin. Epigenet. 2020, 12, 191. [Google Scholar] [CrossRef]
- Darst, R.P.; Pardo, C.E.; Ai, L.; Brown, K.D.; Kladde, M.P. Bisulfite Sequencing of DNA. Curr. Protoc. Mol. Biol. 2010, 91, 7–9. [Google Scholar] [CrossRef]
- Turner, B. ChIP with Native Chromatin: Advantages and Problems Relative to Methods Using Cross-Linked Material. In Mapping Protein/DNA Interactions by Cross-Linking; Institut National de la Santé et de la Recherche Médicale: Paris, France, 2001. [Google Scholar]
- Cottrell, S.E.; Laird, P.W. Sensitive Detection of DNA Methylation. Ann. N. Y Acad. Sci. 2003, 983, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Colyer, H.A.A.; Armstrong, R.N.; Mills, K.I. Microarray for Epigenetic Changes: Gene Expression Arrays. Methods Mol. Biol. 2012, 863, 319–328. [Google Scholar] [CrossRef]
- Meaburn, E.; Schulz, R. Next Generation Sequencing in Epigenetics: Insights and Challenges. Semin. Cell Dev. Biol. 2012, 23, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, H.; Shu, X.; Song, C.-X. Mapping Epigenetic Modifications by Sequencing Technologies. Cell Death Differ. 2023, 1–10. [Google Scholar] [CrossRef]
- Mei, M.; Aldoss, I.; Marcucci, G.; Pullarkat, V. Hypomethylating Agents in Combination with Venetoclax for Acute Myeloid Leukemia: Update on Clinical Trial Data and Practical Considerations for Use. Am. J. Hematol. 2019, 94, 358–362. [Google Scholar] [CrossRef]
- Yoon, S.; Eom, G.H. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med. J. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Julia, E.; Salles, G. EZH2 Inhibition by Tazemetostat: Mechanisms of Action, Safety and Efficacy in Relapsed/Refractory Follicular Lymphoma. Future Oncol. 2021, 17, 2127–2140. [Google Scholar] [CrossRef]
- Riveiro, M.E.; Astorgues-Xerri, L.; Vazquez, R.; Frapolli, R.; Kwee, I.; Rinaldi, A.; Odore, E.; Rezai, K.; Bekradda, M.; Inghirami, G.; et al. OTX015 (MK-8628), a Novel BET Inhibitor, Exhibits Antitumor Activity in Non-Small Cell and Small Cell Lung Cancer Models Harboring Different Oncogenic Mutations. Oncotarget 2016, 7, 84675–84687. [Google Scholar] [CrossRef] [PubMed]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA Therapeutics—Challenges and Potential Solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Rizano, A.; Margiana, R.; Supardi, S.; Narulita, P. Exploring the Future Potential of Mesenchymal Stem/Stromal Cells and Their Derivatives to Support Assisted Reproductive Technology for Female Infertility Applications. Hum. Cell 2023, 36, 1604–1619. [Google Scholar] [CrossRef]
- Adriansyah, R.F.; Margiana, R.; Supardi, S.; Narulita, P. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev. Rep. 2023, 19, 2073–2093. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.F.S.; Silva, G.D.B.; Pavan, A.R.; Chiba, D.E.; Chin, C.M.; Dos Santos, J.L. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017, 9, 1201. [Google Scholar] [CrossRef]
- Zhang, S.; Kiarasi, F. Therapeutic Effects of Resveratrol on Epigenetic Mechanisms in Age-Related Diseases: A Comprehensive Review. Phytother. Res. 2024, 38, 2347–2360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Du, X.; Zhao, L.; He, M.; Lin, L.; Guo, C.; Zhang, X.; Han, J.; Yan, H.; Huang, K.; et al. SIRT1 Facilitates Primordial Follicle Recruitment Independent of Deacetylase Activity through Directly Modulating Akt1 and mTOR Transcription. FASEB J. 2019, 33, 14703–14716. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, S.; Chen, J.; Shi, Q.; Lin, S. Therapeutic Options for Premature Ovarian Insufficiency: An Updated Review. Reprod. Biol. Endocrinol. 2022, 20, 28. [Google Scholar] [CrossRef]
Gene/ Region | Gene Function | Position in Gene | Description |
---|---|---|---|
Hypomethylation | |||
H19 | A long non-coding RNA involved in growth control and development, acting as a tumor suppressor | CpG 1, 3, 6 within 220-bp Fragment (chromosome 11)—located near the promoter region but can extend into the gene body | Decreased methylation in the H19 gene linked to idiopathic male infertility. Lower methylation rates found in infertile males compared to controls, indicating a correlation with male infertility. |
IGF2-H19 | Involved in growth and development. | Promoter region | Hypomethylation in this locus is associated with abnormalities in fetuses conceived through assisted reproductive techniques. |
DAZL | An RNA-binding protein essential for gametogenesis, specifically in the development of sperm | Promoter region | Reduced methylation in the promoter region resulting in impaired spermatogenesis and sperm dysfunction. |
Hypermethylation | |||
MTHFR | Plays a critical role in DNA and folate synthesis, as well as in the DNA methylation process itself. | Promoter region | Abnormal methylation leads to reduced enzyme activity, reduced methionine availability and impaired DNA methylation |
MEST | Involved in cell differentiation and growth, particularly in mesodermal tissues, and imprinting control | Promoter region | Increased methylation in the promoter region causing defective sperm production and oligozoospermia. |
SNRPN | Involved in RNA processing and is an important component of the Prader–Willi syndrome region | Promoter region | Increased methylation in the promoter region associated with impaired spermatogenesis. |
GNAS | Involved in cell differentiation and growth, particularly in mesodermal tissues, and imprinting control. | 32 CpG sites within 343-bp fragment (chromosome 20)—includes regions around the promoter but can also encompass regulatory elements within the gene | Significant aberrant DNA methylation found in 21.5% of infertile men at the GNAS locus. |
DIRAS3 | involved in growth regulation and development via parent-of-origin expression. | 13 CpG sites within 207-bp fragment (chromosome 1)—encompassing promoter regions and nearby regulatory elements. | Significant aberrant DNA methylation found in 22.2% of infertile men at the DIRAS3 locus. |
Gene/Region | Gene Function | Position in Gene | Description |
---|---|---|---|
Hypomethylation | |||
CYP19A1 | Encodes aromatase, key enzyme in estrogen biosynthesis | Promoter region | Methylation changes affect estrogen biosynthesis, contributing to PCOS |
FKBP5 | Encodes a protein that binds to immunophilin and glucocorticoid receptors | Promoter region | Altered methylation impacts stress response and glucocorticoid signaling, contributing to PCOS |
YAP1 | Transcriptional regulator involved in cell proliferation and apoptosis | Promoter region | Changes in methylation affect cell proliferation and apoptosis, associated with PCOS |
KDM6A | Histone demethylase involved in chromatin modification | Promoter region | Hypomethylation affects chromatin structure and gene expression, related to Turner syndrome |
LHCGR | Encodes the receptor for luteinizing hormone/choriogonadotropin | Promoter region | Methylation changes impact hormone receptor expression, associated with PCOS |
USP9X | Deubiquitinating enzyme involved in protein degradation | Promoter region | Hypomethylation impacts protein degradation pathways, related to Turner syndrome |
ZFX | Transcription factor involved in cell differentiation and proliferation | Promoter region | Hypomethylation affects transcription regulation, related to Turner syndrome |
Hypermethylation | |||
HOXA10 | Homeobox gene involved in endometrial receptivity | Promoter region | Altered methylation affects endometrial receptivity, contributing to endometriosis |
PR | Progesterone receptor involved in female reproductive tissue development | Promoter | Hypermethylation of the PR promoter region is associated with reduced gene expression, which can impair reproductive tissue development and function. |
ESR1 | Estrogen receptor involved in hormone signaling and reproductive tissue regulation | Promoter | Hypermethylation of the ESR1 promoter region leads to decreased expression of estrogen receptors, potentially affecting hormone signaling and reproductive tissue health |
Heavy Metal | Negative Impact on Fertility | Epigenetic Changes |
---|---|---|
Arsenic | Triggers DNA methylation, deregulates spermatogenesis, and decreases sperm quality | Increased H3K9me3 in testes, suppression of steroidogenic genes (Star, P450scc, Hsd3b, Cyp17a1, Hsd17b), reduced histone H3K9me2/3 in Leydig cells, increased Hsd3b expression, and disrupted steroid hormone biosynthesis |
Cadmium | Lowers testosterone levels, reduces sperm quality, and affects Sertoli and Leydig cells | Global DNA methylation increase, hypermethylation of Mdr1b gene promoter in BTB, hypomethylation of LINE-1 in testes, increased H3K9me1/2 methylation, and apoptosis |
Lead | Disrupts endocrine function, causes oxidative stress, lowers LH and FSH secretion, causes irregular menstrual cycles, and impaired spermatogenesis | Sex-dependent and gene-specific DNA methylation differences in DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood |
Mercury | Accumulates in reproductive organs, produces ROS, increases oxidative stress, and causes DNA damage to oocytes and sperm cells | Changes in DNA methylation at CpG sites cg12204245 (GRK1), cg02212000 (GGH), and cg24184221 (MED31); impacts lipid metabolism and RNA polymerase II transcription |
Method | Description | Advantages | Limitations | Ref. |
---|---|---|---|---|
Bisulfite Sequencing | Converts unmethylated cytosines to uracil, then is sequenced to detect methylated cytosines | High resolution, quantitative, genome-wide analysis | Time-consuming, requires large amounts of DNA | [75] |
Chromatin Immunoprecipitation (ChIP) | Uses antibodies to isolate DNA-protein complexes, followed by sequencing (ChIP-seq) | Identifies specific protein–DNA interactions and histone modifications | Requires high-quality antibodies and can be technically challenging | [76] |
Methylation-Specific PCR (MSP) | Amplifies DNA regions, differentiating between methylated and unmethylated sequences | Simple, cost-effective, and quick results | Limited to known sequences and not quantitative | [77] |
Microarray Analysis | Uses probes to detect methylation changes across the genome | High throughput, covers large genomic regions | Lower resolution than sequencing and has potential for hybridization errors | [78] |
Next-Generation Sequencing (NGS) | Provides comprehensive profiling of epigenetic marks at high resolution and throughput | High resolution, quantitative, and genome-wide | Expensive and requires extensive data analysis | [79] |
RNA Sequencing (RNA-seq) | Measures non-coding RNA levels to infer epigenetic regulatory changes | High resolution, identifies novel transcripts | Requires high-quality RNA and involves complex data analysis | [80] |
Category | Mechanisms of Action | Examples of Drugs | Disease/Condition | Ref. |
---|---|---|---|---|
DNA Methylation Inhibitors | Inhibit DNA methyltransferases (DNMTs) to reactivate silenced genes | 5-azacytidine, Decitabine | Myelodysplastic syndromes, Acute myeloid leukemia | [81] |
Histone Deacetylase Inhibitors (HDACi) | Inhibit HDACs to promote histone acetylation and gene expression | Vorinostat, Romidepsin | Cutaneous T-cell lymphoma, Peripheral T-cell lymphoma | [82] |
Histone Methyltransferase Inhibitors | Inhibit EZH2 to alter histone methylation and reactivate tumor suppressor genes | Tazemetostat (EZH2 inhibitor) | Follicular lymphoma, Epithelioid sarcoma | [83] |
Bromodomain and Extra-Terminal Domain (BET) Inhibitors | Disrupt BET protein binding to acetylated histones, affecting transcription | JQ1, OTX015 | NUT midline carcinoma, Hematologic malignancies | [84] |
Non-coding RNA Therapies | Regulate gene expression post-transcriptionally | miRNAs, siRNAs | Various cancers, Genetic disorders | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saftić Martinović, L.; Mladenić, T.; Lovrić, D.; Ostojić, S.; Dević Pavlić, S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. Epigenomes 2024, 8, 34. https://doi.org/10.3390/epigenomes8030034
Saftić Martinović L, Mladenić T, Lovrić D, Ostojić S, Dević Pavlić S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. Epigenomes. 2024; 8(3):34. https://doi.org/10.3390/epigenomes8030034
Chicago/Turabian StyleSaftić Martinović, Lara, Tea Mladenić, Dora Lovrić, Saša Ostojić, and Sanja Dević Pavlić. 2024. "Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies" Epigenomes 8, no. 3: 34. https://doi.org/10.3390/epigenomes8030034
APA StyleSaftić Martinović, L., Mladenić, T., Lovrić, D., Ostojić, S., & Dević Pavlić, S. (2024). Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. Epigenomes, 8(3), 34. https://doi.org/10.3390/epigenomes8030034