Examining the Utility of the Mammalian Methylation Array for Pan-Mammalian Analysis of Monozygotic Twinning
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Mammalian Methylation Array
4.2. Mammalian Species Information
4.3. MZ Twinning EWAS Meta-Analysis
4.4. Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bulmer, M.G. The Biology of Twinning in Man; Oxford University Press: Oxford, UK, 1970. [Google Scholar]
- Bortolus, R.; Parazzini, F.; Chatenoud, L.; Benzi, G.; Bianchi, M.M.; Marini, A. The epidemiology of multiple births. Hum. Reprod. Update 1999, 5, 179–187. [Google Scholar] [CrossRef] [PubMed]
- D’Alton, M.; Breslin, N. Management of multiple gestations. Int. J. Gynecol. Obstet. 2020, 150, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Corner, G.W. The observed embryology of human single-ovum twins and other multiple births. Am. J. Obstet. Gynecol. 1955, 70, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Han, Y.; Zenker, J. Cellular mechanisms of monozygotic twinning: Clues from assisted reproduction. Hum. Reprod. Update 2024, dmae022. [Google Scholar] [CrossRef]
- Matorras, R.; Vendrell, A.; Ferrando, M.; Larreategui, Z. Early Spontaneous Twinning Recorded by Time-Lapse. Twin Res. Hum. Genet. 2023, 26, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, J.; Iwasaki, T.; Katada, Y.; Sato, H.; Furuhashi, K.; Tsuji, Y.; Matsumoto, Y.; Shiotani, M. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil. Steril. 2016, 106, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Van Langendonckt, A.; Wyns, C.; Godin, P.A.; Toussaint-Demylle, D.; Donnez, J. Atypical hatching of a human blastocyst leading to monozygotic twinning: A case report. Fertil. Steril. 2000, 74, 1047–1050. [Google Scholar] [CrossRef]
- Bjerre, D.; Thorup, F.; Jørgensen, C.B.; Vejlsted, M.; Fredholm, M. A study of the occurrence of monochorionic and monozygotic twinning in the pig. Anim. Genet. 2009, 40, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Stansfield, W.D. A Serological Estimate of Monzygotic Twinning in Sheep. J. Hered. 1968, 59, 211. [Google Scholar] [CrossRef]
- Silva del Río, N.; Kirkpatrick, B.W.; Fricke, P.M. Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology 2006, 66, 1292–1299. [Google Scholar] [CrossRef]
- Malenfant, R.M.; Coltman, D.W.; Richardson, E.S.; Lunn, N.J.; Stirling, I.; Adamowicz, E.; Davis, C.S. Evidence of adoption, monozygotic twinning, and low inbreeding rates in a large genetic pedigree of polar bears. Polar Biol. 2016, 39, 1455–1465. [Google Scholar] [CrossRef]
- Joonè, C.J.; De Cramer, K.G.M.; Nöthling, J.O. The first case of genetically confirmed monozygotic twinning in the dog. Reprod. Domest. Anim. 2016, 51, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Hossein, M.S.; Son, Y.B.; Jeong, Y.I.; Kang, M.; Lee, S.; Tinson, A.; Hwang, W.S. Case report: Spontaneous abortion of monoamniotic twins at the third trimester of pregnancy in Camelus dromedarius. Front. Vet. Sci. 2023, 10, 1273791. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.I.; Forcada, J. Genetic Analysis of Twinning in Antarctic Fur Seals (Arctocephalus gazella). J. Mammal. 2009, 90, 621–628. [Google Scholar] [CrossRef]
- Loughry, W.J.; Prodöhl, P.A.; McDonough, C.M.; Avise, J.C. Polyembryony in armadillos. Am. Sci. 1998, 86, 274–279. [Google Scholar] [CrossRef]
- Enders, A.C. Implantation in the nine-banded armadillo: How does a single blastocyst form four embryos? Placenta 2002, 23, 71–85. [Google Scholar] [CrossRef]
- van Dongen, J.; Gordon, S.D.; McRae, A.F.; Odintsova, V.V.; Mbarek, H.; Breeze, C.E.; Sugden, K.; Lundgren, S.; Castillo-Fernandez, J.E.; Hannon, E.; et al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 2021, 12, 5618. [Google Scholar] [CrossRef]
- Arneson, A.; Haghani, A.; Thompson, M.J.; Pellegrini, M.; Kwon, S.; Bin, V.H.; Maciejewski, E.; Yao, M.; Li, C.Z.; Lu, A.T.; et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 2022, 13, 783. [Google Scholar] [CrossRef]
- Haghani, A.; Li, C.Z.; Robeck, T.R.; Zhang, J.; Lu, A.T.; Ablaeva, J.; Acosta-Rodríguez, V.A.; Adams, D.M.; Alagaili, A.N.; Almunia, J.; et al. DNA methylation networks underlying mammalian traits. Science 2023, 381, eabq5693. [Google Scholar] [CrossRef]
- Grapes, L.; Malek, M.; Rothschild, M.F. Identification of identical twins and mutation rate in pigs. Iowa State Univ. Anim. Ind. Rep. 2001, 1. [Google Scholar]
- Wallace, M.E.; Williams, D.A. Monozygotic twinning in mice. J. Med. Genet. 1965, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Rowson, L.E.A.; Moor, R. Occurrence and development of identical twins in sheep. Nature 1964, 201, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Jeannotte, L.; Gotti, F.; Landry-Truchon, K. Hoxa5: A key player in development and disease. J. Dev. Biol. 2016, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, T.; Ke, S. Role of the CASZ1 transcription factor in tissue development and disease. Eur. J. Med. Res. 2023, 28, 562. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Lin, E.C.; Chen, S.C.; Huang, S.C.; Liu, B.H.; Yu, Y.H.; Chen, C.; Yang, C.; Lien, C.; Wang, Y.; et al. Differential gene expression between the porcine morula and blastocyst. Reprod. Domest. Anim. 2012, 47, 69–81. [Google Scholar] [CrossRef]
- Sutherland, K.; Leitch, J.; Lyall, H.; Woodward, B.J. Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: A case report. Reprod. Biomed. Online 2019, 38, 491–496. [Google Scholar] [CrossRef]
- Mio, Y.; Maeda, K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am. J. Obstet. Gynecol. 2008, 199, 660.e1–660.e5. [Google Scholar] [CrossRef]
- Behr, B.; Milki, A.A. Visualization of atypical hatching of a human blastocyst in vitro forming two identical embryos. Fertil. Steril. 2003, 80, 1502–1503. [Google Scholar] [CrossRef]
- Yan, Z.; Liang, H.; Deng, L.; Long, H.; Chen, H.; Chai, W.; Suo, L.; Xu, C.; Kuang, Y.; Wu, L.; et al. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS ONE 2015, 10, e0145172. [Google Scholar] [CrossRef]
- Massip, A.; van der Zwalmen, P.; Mulnard, J.; Zwijsen, W. Atypical hatching of a cow blastocyst leading to separation of complete twin half blastocysts. Vet. Rec. 1983, 112, 301. [Google Scholar] [CrossRef]
- Li, C.Z.; Haghani, A.; Yan, Q.; Lu, A.T.; Zhang, J.; Fei, Z.; Ernst, J.; Yang, X.W.; Gladyshev, V.N.; Robeck, T.R.; et al. Epigenetic predictors of species maximum life span and other life-history traits in mammals. Sci. Adv. 2024, 10, eadm7273. [Google Scholar] [CrossRef] [PubMed]
- Zoller, J.A.; Parasyraki, E.; Lu, A.T.; Haghani, A.; Niehrs, C.; Horvath, S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. Geroscience 2024, 46, 945–960. [Google Scholar] [CrossRef]
- Anastasiadi, D.; Piferrer, F. A clockwork fish: Age prediction using DNA methylation-based biomarkers in the European seabass. Mol. Ecol. Resour. 2020, 20, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Fei, Z.; Haghani, A.; Robeck, T.R.; Zoller, J.A.; Li, C.Z.; Lowe, R.; Yan, Q.; Zhang, J.; Vu, H.; et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 2023, 3, 1144–1166. [Google Scholar] [CrossRef]
- Ely, J.J.; Frels, W.I.; Howell, S.; Izard, M.K.; Keeling, M.E.; Lee, D.R. Twinning and heteropaternity in chimpanzees (Pan troglodytes). Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2006, 130, 96–102. [Google Scholar] [CrossRef]
- Ashworth, C.J.; Ross, A.W.; Barrett, P. The use of DNA fingerprinting to assess monozygotic twinning in Meishan and Landrace× Large White pigs. Reprod. Fertil. Dev. 1998, 10, 487–490. [Google Scholar] [CrossRef]
- Laskowski, K.L.; Doran, C.; Bierbach, D.; Krause, J.; Wolf, M. Naturally clonal vertebrates are an untapped resource in ecology and evolution research. Nat. Ecol. Evol. 2019, 3, 161–169. [Google Scholar] [CrossRef]
- Breeze, C.E. Cell type-specific signal analysis in epigenome-wide association studies. In Epigenome-Wide Association Studies: Methods and Protocols; Springer: New York, NY, USA, 2022; pp. 57–71. [Google Scholar]
- Breeze, C.E.; Reynolds, A.P.; Van Dongen, J.; Dunham, I.; Lazar, J.; Neph, S.; Vierstra, J.; Bourque, G.; Teschendorff, A.E.; Stamatoyannopoulos, J.A.; et al. EFORGE v2.0: Updated analysis of cell type-specific signal in epigenomic data. Bioinformatics 2019, 35, 4767–4769. [Google Scholar] [CrossRef]
- Breeze, C.E.; Paul, D.S.; van Dongen, J.; Butcher, L.M.; Ambrose, J.C.; Barrett, J.E.; Lowe, R.; Rakyan, V.K.; Iotchkova, V.; Frontini, M.; et al. eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data. Cell Rep. 2016, 17, 2137–2150. [Google Scholar] [CrossRef]
IlmnID | N | Z-Score | p-Value | CHR | Position | Human Gene | Human Nearest Gene |
---|---|---|---|---|---|---|---|
cg15089111 | 5722 | −5.884 | 3.995 × 10−9 | 14 | 34270113 | NPAS3 | NPAS3 |
cg16547529 | 5723 | 5.594 | 2.223 × 10−8 | 11 | 75140681 | KLHL35 | KLHL35 |
cg10816626 | 5722 | −5.514 | 3.509 × 10−8 | 1 | 10711457 | CASZ1 | CASZ1 |
cg14209399 | 5720 | −5.409 | 6.349 × 10−8 | 3 | 10370507 | ATP2B2 | ATP2B2 |
cg02170386 | 5723 | −5.397 | 6.759 × 10−8 | 14 | 70316972 | SMOC1 |
Order | N Species | N MZ-DMP Probes Mapped to Human Orthologous Genes | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | Median | ||
Cetacea | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 4 |
Perissodactyla | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 4 |
Primates | 19 | 0 | 0 | 3 | 5 | 9 | 2 | 4 |
Artiodactyla | 8 | 0 | 0 | 0 | 4 | 4 | 0 | 3.5 |
Carnivora | 12 | 1 | 1 | 3 | 3 | 4 | 0 | 3 |
Chiroptera | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 3 |
Cingulata | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Lagomorpha | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Monotremata | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Proboscidea | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Rodentia | 24 | 0 | 4 | 9 | 8 | 3 | 0 | 2 |
Dasyuromorphia | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Didelphimorphia | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Diprotodontia | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
N total | 76 | 5 | 5 | 20 | 22 | 22 | 2 |
Species Latin Name | Common Name | Order | N Mapped a | N Human Orthologous Gene b | N Human Orthologous Gene and Region c |
---|---|---|---|---|---|
Rhinopithecus bieti | Black-and-white snub-nosed monkey | Primates | 5 | 5 | 2 |
Saimiri boliviensis | Black-capped squirrel monkey | Primates | 5 | 5 | 2 |
Gorilla gorilla | Gorilla | Primates | 5 | 4 | 1 |
Canis lupus familiaris | Dog | Carnivora | 4 | 4 | 1 |
Capra hircus | Domestic goat | Artiodactyla | 4 | 4 | 1 |
Felis catus | Cat/Domestic cat | Carnivora | 4 | 4 | 2 |
Bos taurus | Cattle | Artiodactyla | 4 | 4 | 1 |
Cebus capucinus | Colombian white-faced capuchin | Primates | 4 | 4 | 2 |
Colobus angolensis | Angola colobus | Primates | 4 | 4 | 2 |
Equus asinus | Donkey | Perissodactyla | 4 | 4 | 1 |
Cryptomys damarensis | Damaraland mole rat | Rodentia | 4 | 4 | 1 |
Ictidomys tridecemlineatus | Thirteen-lined ground squirrel | Rodentia | 4 | 4 | 1 |
Lynx canadensis | Canada lynx | Carnivora | 4 | 4 | 1 |
Mandrillus leucophaeus | Drill | Primates | 4 | 4 | 1 |
Microcebus murinus | Grey mouse lemur | Primates | 4 | 4 | 1 |
Neovison vison | American mink | Carnivora | 4 | 4 | 1 |
Octodon degus | Common degu | Rodentia | 4 | 4 | 1 |
Papio anubis | Olive baboon | Primates | 4 | 4 | 1 |
Pan paniscus | Bonobo | Primates | 4 | 4 | 1 |
Sus scrofa | Domestic pig | Artiodactyla | 4 | 4 | 2 |
Rhinopithecus roxellana | Golden snub-nosed monkey | Primates | 4 | 4 | 2 |
Ovis aries | Sheep | Artiodactyla | 4 | 4 | 2 |
Theropithecus gelada | Gelada | Primates | 4 | 4 | 1 |
Tursiops truncatus | Bottlenose dolphin | Cetacea | 4 | 4 | 1 |
Species | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
---|---|---|---|---|---|---|
Homo Sapiens | Chr | 14 | 11 | 1 | 3 | 14 |
Position | 34270113 | 75140681 | 10711457 | 10370507 | 70316972 | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Human nearest gene | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | SMOC1 | |
DHS Tissue | ES cell | Blood, Fetal Heart, Fetal Kidney, Fetal Muscle Leg, Fetal Stomach | ES cell, Fetal Adrenal Gland, Fetal Brain, Fetal Lung | ES cell, IPS cell | Fetal Brain, Fetal Muscle Leg, Placenta, Psoas Muscle | |
Dasypus novemcinctus | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | 1. conserved gene and region | NA | 2. conserved gene but different region | 3. mapped to different genes | 3. mapped to different genes | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Dasypus novemcinctus gene symbol | NPAS3 | NA | CASZ1 | GHRL | SLC10A1 | |
Bos taurus | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | 1. conserved gene and region | NA | 2. conserved gene but different region | 2. conserved gene but different region | 2. conserved gene but different region | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Bos taurus gene symbol | NPAS3 | NA | CASZ1 | ATP2B2 | SMOC1 | |
Mus musculus | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | NA | NA | 2. conserved gene but different region * | 1. conserved gene and region | 2. conserved gene but different region | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Mus musculus gene symbol | NA | NA | Casz1 | Atp2b2 | Smoc1 | |
Sus scrofa | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | 1. conserved gene and region | NA | 2. conserved gene but different region | 1. conserved gene and region | 2. conserved gene but different region | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Sus scrofa gene symbol | NPAS3 | NA | CASZ1 | ATP2B2 | SMOC1 | |
Canis lupus familiaris | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | 1. conserved gene and region * | NA | 2. conserved gene but different region | 2. conserved gene but different region | 2. conserved gene but different region | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Canis lupus familiaris gene symbol | NPAS3 | NA | CASZ1 | ATP2B2 | SMOC1 | |
Ovis aries | CpG | cg15089111 | cg16547529 | cg10816626 | cg14209399 | cg02170386 |
Conservation class | 1. conserved gene and region | NA | 2. conserved gene but different region | 2. conserved gene but different region | 3. mapped to different genes | |
Human gene symbol | NPAS3 | KLHL35 | CASZ1 | ATP2B2 | ||
Ovis aries gene symbol | NPAS3 | NA | CASZ1 | ATP2B2 | SLC10A1 |
IlmnID | N | Z-Score | p-Value | CHR | Position | Human Gene | Human Nearest Gene |
---|---|---|---|---|---|---|---|
cg15089111 * | 5722 | −5.884 | 3.995 × 10−9 | 14 | 34270113 | NPAS3 | NPAS3 |
cg16547529 * | 5723 | 5.594 | 2.223 × 10−8 | 11 | 75140681 | KLHL35 | KLHL35 |
cg10816626 * | 5722 | −5.514 | 3.509 × 10−8 | 1 | 10711457 | CASZ1 | CASZ1 |
cg14209399 * | 5720 | −5.409 | 6.349 × 10−8 | 3 | 10370507 | ATP2B2 | ATP2B2 |
cg02170386 * | 5723 | −5.397 | 6.759 × 10−8 | 14 | 70316972 | SMOC1 | |
cg04863892 | 5722 | 5.260 | 1.439 × 10−7 | 7 | 27183375 | HOXA5 | HOXA-AS3 |
cg16300531 | 5722 | −5.093 | 3.529 × 10−7 | 12 | 118405988 | KSR2 | KSR2 |
cg02005600 | 5723 | 4.880 | 1.059 × 10−6 | 7 | 27183686 | HOXA5 | HOXA-AS3 |
cg05280206 | 5722 | −4.848 | 1.246 × 10−6 | 11 | 1575607 | HCCA2; DUSP8 | MOB2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Dongen, J.; Breeze, C.E.; Twinning Genetics Consortium. Examining the Utility of the Mammalian Methylation Array for Pan-Mammalian Analysis of Monozygotic Twinning. Epigenomes 2024, 8, 37. https://doi.org/10.3390/epigenomes8040037
van Dongen J, Breeze CE, Twinning Genetics Consortium. Examining the Utility of the Mammalian Methylation Array for Pan-Mammalian Analysis of Monozygotic Twinning. Epigenomes. 2024; 8(4):37. https://doi.org/10.3390/epigenomes8040037
Chicago/Turabian Stylevan Dongen, Jenny, Charles E. Breeze, and Twinning Genetics Consortium. 2024. "Examining the Utility of the Mammalian Methylation Array for Pan-Mammalian Analysis of Monozygotic Twinning" Epigenomes 8, no. 4: 37. https://doi.org/10.3390/epigenomes8040037
APA Stylevan Dongen, J., Breeze, C. E., & Twinning Genetics Consortium. (2024). Examining the Utility of the Mammalian Methylation Array for Pan-Mammalian Analysis of Monozygotic Twinning. Epigenomes, 8(4), 37. https://doi.org/10.3390/epigenomes8040037