A Novel Monitoring System (AUT FIT) for Anthropometrics and Physical Fitness in Primary School Children in Austria: A Cross-Sectional Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Selection of Schools and Participants
2.3. Procedures
2.4. AUT FIT Monitoring Tools
2.4.1. Weight Status (Mt1)
2.4.2. Estimate of Visceral Adiposity (Mt2)
2.4.3. Physical Fitness (Mt3)
- Cardiorespiratory endurance
- Muscular endurance and full body coordination
- Lower body strength
- Upper body strength
- Flexibility
- Action speed
- Reaction speed
- Balance
2.4.4. Procedure
2.5. Standardization and Classification
2.5.1. Weight Classification
2.5.2. Waist-to-Height Ratio
2.5.3. Fitness Tests
2.5.4. Test–Retest Reliability
2.5.5. Interrater Reliability
2.5.6. Criterion Validity
2.6. Statistical Analysis
3. Results
3.1. Results of AUT FIT
3.2. Reliability of AUT FIT
3.2.1. Test–Retest Reliability
3.2.2. Interrater Reliability
3.3. Validity of AUT FIT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
One Test Instructor | ||||
---|---|---|---|---|
Lesson (Duration: 50 min) | ||||
0–16 min | 17–33 min | 34–50 min | ||
Lesson 1 | W/H/WC | RD | VSR | |
Lesson 2 | 4 × 10 SHR | MB1kg | SLJ | |
Lesson 3 | JS | BA (SLS-L + SLS-R) | ||
Lesson 4 | 6MR | |||
Two Test Instructors | ||||
Lesson (Duration: 50 min) | ||||
0–16 min | 17–33 min | 34–50 min | ||
Lesson 1, Test instructor 1 | W/H/WC | RD | VSR | |
Lesson 1, Test instructor 2 | 4 × 10 SHR | MB1kg | SLJ | |
Lesson 2, Test instructor 1 | JS | BA | ||
Lesson 2, Test instructor 2 | 6MR |
Step 1 | Step 2 | Step 3 | |||||
---|---|---|---|---|---|---|---|
Calculation of standard deviation scores (SDS) or traditional z-values based on own study group and two international reference values | SDS or z-scores of fitness tests are converted to nine-point scale (STA9) using inverse z-standardization | Classification of STA9 scores into a nine-point rating | |||||
STA9 values | Points for Mt3-A and Mt3-B | ||||||
<2.0 | 1 | ||||||
2.0 to 3.0 | 2 | ||||||
6MR | 3.0 to 4.0 | 3 | |||||
JS | 4.0 to 5.0 | 4 | |||||
SLJ | 5.0 to 6.0 | 5 | |||||
MB1kg | 6.0 to 7.0 | 6 | |||||
VSR | 7.0 to 8.0 | 7 | |||||
4 × 10 SHR | 8.0 to 9.0 | 8 | |||||
RD | ≥9.0 | 9 | |||||
Step 4 | Step 5 | ||||||
Calculation of mean from three individual nine-point rating scores recorded in step three (own study group and two international reference scores) | Self-constructed nine-point rating for balance | ||||||
Assessment of left leg | Assessment of right leg | Overall assessment of balance | |||||
SLS-L | Points for SLS-L | SLS-R | Points for SLS-R | Sum of SLS-L and SLS-R points and cut off points for nine-point rating of balance | Points for assessment of balance | ||
Balance (s) | Balance (s) | ||||||
≤9.9 | 1 | ≤9.9 | 1 | 2 | 1 | ||
10.0 to 14.9 | 2 | 10.0 to 14.9 | 2 | 2.1 to 4.0 | 2 | ||
15.0 to 19.9 | 3 | 15.0 to 19.9 | 3 | 4.1 to 6.0 | 3 | ||
20.0 to 24.9 | 4 | 20.0 to 24.9 | 4 | 6.1 to 8.0 | 4 | ||
25.0 to 29.9 | 5 | 25.0 to 29.9 | 5 | 8.1 to 10.0 | 5 | ||
30.0 to 34.9 | 6 | 30.0 to 34.9 | 6 | 10.1 to 12.0 | 6 | ||
35.0 to 39.9 | 7 | 35.0 to 39.9 | 7 | 12.1 to 14.0 | 7 | ||
40.0 to 45.9 | 8 | 40.0 to 45.9 | 8 | 14.1 to 16.0 | 8 | ||
≥45.0 | 9 | ≥45.0 | 9 | >16.0 | 9 | ||
Step 6 | Step 7 | ||||||
Mt3-A = Calculation of sum from mean scores of 6MR, JS, and SLJ recorded in step four | Mt3-B = Calculation of sum from mean scores of all physical fitness tests recorded in step four and points for balance in step five | Classification of sum scores (Mt3-A and Mt3-B) made in step six for overall assessment by nine-point rating | |||||
Cut-off points of sum for Mt3-A | Cut-off points of sum for Mt3-B | Points and description of performance for nine-point rating resulting from sum values for Mt3-A and Mt3-B | |||||
<5.0 | <12 | 1 | Poor | ||||
5.0 to 7.9 | 12.0 to 19.9 | 2 | Very weak | ||||
8.0 to 10.9 | 20.0 to 27.9 | 3 | Weak | ||||
11.0 to 13.9 | 28.0 to 35.9 | 4 | Below average | ||||
14.0 to 16.9 | 36.0 to 43.9 | 5 | Average | ||||
17.0 to 19.9 | 44.0 to 51.9 | 6 | Above average | ||||
20.0 to 22.9 | 52.0 to 59.9 | 7 | Very good | ||||
23.0 to 25.9 | 60.0 to 67.9 | 8 | Excellent | ||||
≥26.0 | ≥68.0 | 9 | Outstanding |
References
- Myers, J.; McAuley, P.; Lavie, C.J.; Despres, J.-P.; Arena, R.; Kokkinos, P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: Their independent and interwoven importance to health status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.N.M.; Roseboom, T.J.; Gemke, R.J.B.J. Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies. Sports Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef] [Green Version]
- Umer, A.; Kelley, G.A.; Cottrell, L.E.; Giacobbi, P.; Innes, K.E.; Lilly, C.L. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017, 17, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, D.S.; Khan, L.K.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: The Bogalusa Heart Study. Pediatrics 2001, 108, 712–718. [Google Scholar] [CrossRef]
- Cleland, V.J.; Ball, K.; Magnussen, C.; Dwyer, T.; Venn, A. Socioeconomic position and the tracking of physical activity and cardiorespiratory fitness from childhood to adulthood. Am. J. Epidemiol. 2009, 170, 1069–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermi, S.; Sacco, A.M.; Belviso, I.; Romano, V.; Montesano, P.; Corrado, B.; Sirico, F. Guidelines for Physical Activity-A Cross-Sectional Study to Assess Their Application in the General Population. Have We Achieved Our Goal? Int. J. Environ. Res. Public Health 2020, 17, 3980. [Google Scholar] [CrossRef] [PubMed]
- Libertus, K.; Hauf, P. Editorial: Motor Skills and Their Foundational Role for Perceptual, Social, and Cognitive Development. Front. Psychol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Hermoso, A.; Ramírez-Vélez, R.; García-Alonso, Y.; Alonso-Martínez, A.M.; Izquierdo, M. Association of Cardiorespiratory Fitness Levels During Youth With Health Risk Later in Life: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 952–960. [Google Scholar] [CrossRef]
- Barnett, L.M.; Webster, E.K.; Hulteen, R.M.; De Meester, A.; Valentini, N.C.; Lenoir, M.; Pesce, C.; Getchell, N.; Lopes, V.P.; Robinson, L.E.; et al. Through the Looking Glass: A Systematic Review of Longitudinal Evidence, Providing New Insight for Motor Competence and Health. Sports Med. 2021. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef]
- Haga, M. The relationship between physical fitness and motor competence in children. Child Care Health Dev. 2008, 34, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, T.; Yli-Piipari, S.; Huhtiniemi, M.; Salin, K.; Seppälä, S.; Hakonen, H.; Gråstén, A. Longitudinal associations among cardiorespiratory and muscular fitness, motor competence and objectively measured physical activity. J. Sci. Med. Sport 2019, 22, 1243–1248. [Google Scholar] [CrossRef]
- Pate, R.R. A New Definition of Youth Fitness. Physician Sportsmed. 1983, 11, 77–83. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Stodden, D.; Sacko, R.; Nesbitt, D. A Review of the Promotion of Fitness Measures and Health Outcomes in Youth. Am. J. Lifestyle Med. 2017, 11, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Casonatto, J.; Fernandes, R.A.; Batista, M.B.; Cyrino, E.S.; Coelho-e-Silva, M.J.; de Arruda, M.; Vaz Ronque, E.R. Association between health-related physical fitness and body mass index status in children. J. Child Health Care 2016, 20, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Britton, Ú.; Issartel, J.; Fahey, G.; Conyngham, G.; Belton, S. What is health-related fitness? Investigating the underlying factor structure of fitness in youth. Eur. Phys. Educ. Rev. 2020, 26, 782–796. [Google Scholar] [CrossRef]
- Corbin, C.B.; Pangrazi, R.P.; Franks, B.D. Definitions: Health, Fitness, and Physical Activity: President’s Council on Physical Fitness and Sports Research Digest; Series 3 n9 Mar 2000; President’s Council on Physical Fitness and Sports: Washington, DC, USA, 2000. [Google Scholar]
- Frick, A.; Möhring, W. A Matter of Balance: Motor Control is Related to Children’s Spatial and Proportional Reasoning Skills. Front. Psychol. 2015, 6, 2049. [Google Scholar] [CrossRef] [Green Version]
- Bös, K. Handbuch Motorische Tests: Sportmotorische Tests, Motorische Funktionstests, Fragebögen zur körperlich-Sportlichen Aktivität und Sportpsychologische Diagnoseverfahren, 3., überarbeitete und erweiterte Auflage; Hogrefe: Göttingen, Germany, 2017; ISBN 9783801723699. [Google Scholar]
- Carrel, A.L.; Bowser, J.; White, D.; Moberg, D.P.; Weaver, B.; Hisgen, J.; Eickhoff, J.; Allen, D.B. Standardized childhood fitness percentiles derived from school-based testing. J. Pediatr. 2012, 161, 120–124. [Google Scholar] [CrossRef] [Green Version]
- The Cooper Institute. FitnessGram Administration Manual: The Journey to MyHealthyZone, 5th ed.; Human Kinetics: Champaign, IL, USA, 2017; ISBN 9781492579670. [Google Scholar]
- Król-Zielińska, M.; Groffik, D.; Bronikowski, M.; Kantanista, A.; Laudańska-Krzemińska, I.; Bronikowska, M.; Korcz, A.; Borowiec, J.; Frömel, K. Understanding the Motives of Undertaking Physical Activity with Different Levels of Intensity among Adolescents: Results of the INDARES Study. BioMed Res. Int. 2018, 2018, 1849715. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela-Rejón, M.J.; Mora, J.; et al. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Bös, K. Deutscher Motorik-Test 6-18: (DMT 6-18): Manual und internetbasierte Auswertungssoftware, 2. Auflage; Feldhaus, Edition Czwalina: Hamburg, Germany, 2016; ISBN 9783880206434. [Google Scholar]
- Měkota, K.; Kovář, R. UNIFITTEST (6–60): Tests and Norms of Motor Performance and Physical Fitness in Youth and in Adult Age; Vydavatelstvi Univerzity Palackeho: Olomouc, Czech Republic, 1995; ISBN 8070675810. [Google Scholar]
- Stemper, T.; Bachmann, C.; Diehlmann, K.; Kemper, B. DüMo Düsseldorfer Modell der Bewegungs-, Sport- und Talentförderung: 2003–2018: Konzept, Normwerte, Untersuchungsergebnisse; LIT: Berlin, Germany, 2020; ISBN 9783643147783. [Google Scholar]
- Ahrens, W.; Bammann, K.; Siani, A.; Buchecker, K.; de Henauw, S.; Iacoviello, L.; Hebestreit, A.; Krogh, V.; Lissner, L.; Mårild, S.; et al. The IDEFICS cohort: Design, characteristics and participation in the baseline survey. Int. J. Obes. 2011, 35 (Suppl. S1), S3–S15. [Google Scholar] [CrossRef] [Green Version]
- De Miguel-Etayo, P.; Gracia-Marco, L.; Ortega, F.B.; Intemann, T.; Foraita, R.; Lissner, L.; Oja, L.; Barba, G.; Michels, N.; Tornaritis, M.; et al. Physical fitness reference standards in European children: The IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. S2), S57–S66. [Google Scholar] [CrossRef] [Green Version]
- Keating, X.D.; Smolianov, P.; Liu, X.; Castro-Piñero, J.; Smith, J. Youth Fitness Testing Practices: Global Trends and New Development. Available online: https://thesportjournal.org/article/youth-fitness-testing-practices-global-trends-and-new-development/ (accessed on 15 October 2021).
- Graf, C.; Jouck, S.; Koch, B.; Staudenmaier, K.; von Schlenk, D.; Predel, H.-G.; Tokarski, W.; Dordel, S. Motorische Defizite–wie schwer wiegen sie? Monatsschr Kinderheilkd 2007, 155, 631–637. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Ortega, F.B.; Artero, E.G.; Girela-Rejón, M.J.; Mora, J.; Sjöström, M.; Ruiz, J.R. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J. Strength Cond. Res. 2010, 24, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.C.; Yuen, P.Y.; Morrow, J.R.; Jackson, A.W. Comparison of the Criterion-Related Validity of Sit-and-Reach Tests with and without Limb Length Adjustment in Asian Adults. Res. Q. Exerc. Sport 1999, 70, 401–406. [Google Scholar] [CrossRef]
- Hui, S.S.; Yuen, P.Y. Validity of the modified back-saver sit-and-reach test: A comparison with other protocols. Med. Sci. Sports Exerc. 2000, 32, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Castro-Piñero, J.; Chillón, P.; Ortega, F.B.; Montesinos, J.L.; Sjöström, M.; Ruiz, J.R. Criterion-related validity of sit-and-reach and modified sit-and-reach test for estimating hamstring flexibility in children and adolescents aged 6-17 years. Int. J. Sports Med. 2009, 30, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.; Gleiss, A.; Häusler, G.; Borkenstein, M.; Kapelari, K.; Köstl, G.; Lassi, M.; Schemper, M.; Schmitt, K.; Blümel, P. Weight and body mass index (BMI): Current data for Austrian boys and girls aged 4 to under 19 years. Ann. Hum. Biol. 2015, 42, 45–55. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, USA, 1988; ISBN 0805802835. [Google Scholar]
- Aranha, V.P.; Moitra, M.; Saxena, S.; Narkeesh, K.; Arumugam, N.; Samuel, A.J. Motor cognitive processing speed estimation among the primary schoolchildren by deriving prediction formula: A cross-sectional study. J. Neurosci. Rural Pract. 2017, 8, 79–83. [Google Scholar] [CrossRef]
- Fetz, F.; Kornexl, E. Sportmotorische Tests: Praktische Anleitung zu sportmotorischen Tests in Schule und Verein, 2., überarb. u. erw. Aufl.; Österr. Bundesverl.: Wien, Austria, 1978; ISBN 387039028X. [Google Scholar]
- Leodolter, I. Short report: The mother-child health passport: Austria’s successful weapon against infant mortality. Prev. Med. 1978, 7, 561–563. [Google Scholar] [CrossRef]
- Republik Österreich. Stenographisches Protokoll-327. Sitzung des Bundesrates der Republik Österreich. S 9909–9914: Beschluss-Einführung Mutter-Kind-Pass. 1973. Available online: https://www.parlament.gv.at/PAKT/VHG/BR/BRSITZ/BRSITZ_00327/imfname_179113.pdf (accessed on 3 September 2021).
- Republik Österreich. Stenographisches Protokoll-96. Sitzung des Nationalrates der Republik Österreich. XV. Gesetzgebungsperiode. S 9637: Erhöhung der Zeitspanne-der Mutter-Kind-Pass Untersuchungen, Donnerstag. 1981. Available online: https://www.parlament.gv.at/PAKT/VHG/XV/NRSITZ/NRSITZ_00096/imfname_146978.pdf (accessed on 3 September 2021).
- Kerbl, R. 37 Jahre Österreichischer Mutter-Kind-Pass. Paediatr. Paedolog. 2011, 46, 14–17. [Google Scholar] [CrossRef]
- Langmann, A.; Lindner, S.; Koch, M.; Wackernagel, W.; Gschiel, G. Ophthalmological care of children’s eyes in Austria. Spektrum Der Augenheilkunde-Spektrum Augenheilkd 2005, 19, 294–295. [Google Scholar] [CrossRef]
- Wendt, C. Health Services for Children in Denmark, Germany, Austria and Great Britain; MZES: Mannheim, Germany, 1999. [Google Scholar]
- Kerbl, R.; Ziniel, G.; Winkler, P.; Habl, C.; Püspök, R.; Waldhauser, F. Child Health Care Services in Austria. J. Pediatr. 2016, 177, S35–S47. [Google Scholar] [CrossRef] [Green Version]
- Republik Österreich. RIS-Rechtsinformationssytem des Bundes-Österreich-Bundesgesetzblatt und Verordnungen: BGBl. II Nr. 1/2009-letzte Änderung BGBl. II Nr. 548/2020. Bundesgesetzblatt. Available online: https://www.ris.bka.gv.at/Bgbl-Auth/ (accessed on 3 September 2021).
- Gamper, M. Die Entwicklung des Schularztwesens in Österreich: Eine Grundlage zur Leitbildentwicklung der Schulärztinnen und Schulärzte und Ausgangspunkt für Überlegungen zum “SCHULARZT NEU”., Wien, ISBN 3-85031-001-9. 2002. Available online: https://schularzt.at/fileadmin/user_upload/bilder/SAWesen_nurtext.pdf (accessed on 3 September 2021).
- Catley, M.J.; Tomkinson, G.R. Normative health-related fitness values for children: Analysis of 85347 test results on 9-17-year-old Australians since 1985. Br. J. Sports Med. 2013, 47, 98–108. [Google Scholar] [CrossRef]
- Liu, X.; Keating, X.D.; Shangguan, R. Historical Analyses of Fitness Testing of College Students in China. ICHPER-SD J. Res. 2017, 9, 24–32. [Google Scholar]
- Shingo, N.; Takeo, M. The educational experiments of school health promotion for the youth in Japan: Analysis of the ‘sport test’ over the past 34 years. Health Promot. Int. 2002, 17, 147–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantsekuzhin, N.O.; Astafev, N.V.; Nayn, A.A. The Role of All-Russian Physical Culture-Sports “Ready For Labor and Defense” (GTO) Complex in the System of Junior School Children Education. In First International Volga Region Conference on Economics, Humanities and Sports; Atlantis Press: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mauz, E.; Lange, M.; Houben, R.; Hoffmann, R.; Allen, J.; Gößwald, A.; Hölling, H.; Lampert, T.; Lange, C.; Poethko-Müller, C.; et al. Cohort profile: KiGGS cohort longitudinal study on the health of children, adolescents and young adults in Germany. Int. J. Epidemiol. 2020, 49, 375–375k. [Google Scholar] [CrossRef]
- Jurak, G.; Leskošek, B.; Kovač, M.; Sorić, M.; Kramaršič, J.; Sember, V.; Đurić, S.; Meh, K.; Morrison, S.A.; Strel, J.; et al. SLOfit surveillance system of somatic and motor development of children and adolescents: Upgrading the Slovenian Sports Educational Chart. AUC KINANTHROPOLOGICA 2020, 56, 28–40. [Google Scholar] [CrossRef]
- Jurak, G.; Kovac, M.; Sember, V.; Starc, G. 30 Years of SLOfit: Its Legacy and Perspective. Turk. J. Sports Med. 2019, 54, 23–27. [Google Scholar] [CrossRef]
- Becker, J. Der Deutsche Motorik Test 6-18 (DMT6-18) in der Praxis, 1. Auflage; GRIN Verlag: München, Germany, 2020; ISBN 9783346149244. [Google Scholar]
- Vandorpe, B.; Vandendriessche, J.; Lefevre, J.; Pion, J.; Vaeyens, R.; Matthys, S.; Philippaerts, R.; Lenoir, M. The KörperkoordinationsTest für Kinder: Reference values and suitability for 6-12-year-old children in Flanders. Scand. J. Med. Sci. Sports 2011, 21, 378–388. [Google Scholar] [CrossRef]
- Jouck, S.; Koch, B.; Graf, C.; Predel, H.G.; Dordel, S. Dordel-Koch-Test (DKT)–zur Erfassung der motorischen Basisfunktionen im Kindes- und Jugendalter; erste Ergebnisse der Normierung. Aktuelle Ernahr. 2006, 31, 27. [Google Scholar] [CrossRef]
- Jarnig, G.; Jaunig, J.; van Poppel, M.N.M. Association of COVID-19 Mitigation Measures with Changes in Cardiorespiratory Fitness and Body Mass Index Among Children Aged 7 to 10 Years in Austria. JAMA Netw. Open 2021, 4, e2121675. [Google Scholar] [CrossRef]
- Miller, L.J. Developing Norm-referenced Standardized Tests; Psychology Press: Hove, East Sussex, UK, 1989; ISBN 9780866568838. [Google Scholar]
AUT FIT | Monitoring | ||||||
---|---|---|---|---|---|---|---|
Tool 1 (Mt1) | Tool 2 (Mt2) | Tool 3 (Mt3) | |||||
Mt3-A | Mt3-B | ||||||
Anthropometrics | Weight (kg) | BMI (kg/m2) | Weight classification by BMI | ||||
Height (cm) | |||||||
WHtR | Estimate of visceral adiposity | ||||||
Waist circumference (cm) | |||||||
Physical fitness | Cardiorespiratory fitness | 6 MR (m) | Health-related fitness | Motor fitness | |||
Muscular endurance/full-body coordination | JS (N) | ||||||
Muscular strength | Lower body strength | SLJ (cm) | |||||
Upper body strength | MB1kg (cm) | ||||||
Flexibility | VSR (cm) | ||||||
Speed | Action speed | 4 × 10 SHR (s) | |||||
Reaction speed | RD (cm) | ||||||
Balance | SLS-L (s) | ||||||
SLS-R (s) |
Variable | Classification | All (n = 821) |
---|---|---|
Age (years) | 8.3 (0.7) | |
Weight (kg) | 29.8 (7.2) | |
Height (cm) | 132.1 (6.7) | |
Waist circumference (cm) | 60.9 (8.1) | |
BMI (kg/m2) | 16.9 (2.9) | |
EQUI BMI | 22.2 (3.5) | |
WHtR | 0.46 (0.05) | |
6MR (m) | 913 (140) | |
JS (N) | 31.7 (7.1) | |
SLJ (cm) | 124 (20) | |
MB1kg (kg) | 343 (73) | |
VSR (cm) | 17.4 (8.5) | |
4 × 10 SHR (s) | 15.0 (1.5) | |
RD (cm) | 17.6 (8.1) | |
SLS-L (s) | 22.7 (16.4) | |
SLS-R (s) | 26.2 (15.9) | |
Mt1: Weight classification (N (%)) | Underweight | 52 (6.4%) |
Normal weight | 645 (78.6%) | |
Overweight | 89 (10.8%) | |
Obese | 27 (3.3%) | |
Morbidly obese | 8 (1.0%) | |
Mt2: Health risk (N (%)) | No health risk | 681 (82.9%) |
Increased health risk | 119 (14.5%) | |
High health risk | 21 (2.6%) | |
Mt3-A: Health-related fitness level (N (%)) | Low performance | 92 (11.2%) |
Average performance | 516 (62.9%) | |
Good performance | 213 (25.9%) | |
Mt3-B: Motor fitness level (N (%)) | Low performance | 48 (5.8%) |
Average performance | 639 (77.8%) | |
Good performance | 134 (16.3%) |
Antropometrics and Fitness Tests | Test Time 1 | Test Time 2 | ICC* (2.1) | 95% CI |
---|---|---|---|---|
Weight (kg) | 39.2 (10.1) | 39.1 (10.3) | 0.99 | 0.99 to >0.99 |
Height (cm) | 142.2 (6.4) | 142.1 (6.4) | 0.99 | 0.99 to 0.99 |
Waist circumference (cm) | 65.3 (9.4) | 64.9 (9.6) | 0.97 | 0.92 to 0.99 |
6MR (m) | 1004 (77) | 986 (72) | 0.86 | 0.64 to 0.95 |
JS (N) | 30.6 (5.5) | 36.1 (5.3) | 0.41 | −0.10 to 0.76 |
SLJ (cm) | 142.8 (15.8) | 141.5 (16.2) | 0.79 | 0.51 to 0.92 |
MB1kg (s) | 411 (84) | 436 (76) | 0.70 | 0.35 to 0.88 |
VSR (cm) | 11.2 (7.5) | 14.5 (6.8) | 0.85 | 0.20 to 0.96 |
4 × 10 SHR (s) | 13.33 (0.96) | 13.38 (0.69) | 0.80 | 0.53 to 0.92 |
RD (cm) | 24.1 (6.1) | 19.4 (5.2) | −0.07 | −0.40 to 0.35 |
SLS-L (s) | 29.0 (15.9) | 29.7 (14.5) | 0.81 | 0.55 to 0.93 |
SLS-R (s) | 31.2 (13.8) | 31.7 (15.6) | 0.57 | 0.12 to 0.82 |
Antropometrics and Fitness Tests | Rater 1 | Rater 2 | ICC* (2.1) | 95% CI |
---|---|---|---|---|
Weight (kg) | 38.5 (10.2) | 38.5 (10.2) | >0.99 | >0.99 to >0.99 |
Height (cm) | 141.6 (6.9) | 141.5 (6.9) | 0.99 | 0.99 to >0.99 |
Waist circumference (cm) | 65.8 (9.2) | 65.1 (9.2) | 0.96 | 0.90 to 0.98 |
6MR (m) | 983 (118) | 982 (118) | >0.99 | >0.99 to >0.99 |
JS (N) | 30.5 (5.3) | 30.7 (5.2) | 0.98 | 0.95 to 0.99 |
SLJ (cm) | 140.9 (18.0) | 140.6 (17.8) | 0.99 | 0.99 to 0.99 |
MB1kg (s) | 412 (86) | 408 (83) | 0.99 | 0.99 to 0.99 |
VSR (cm) | 11.2 (7.5) | 10.6 (7.8) | 0.88 | 0.70 to 0.95 |
4 × 10 SHR (s) | 13.22 (0.90) | 13.37 (0.95) | 0.97 | 0.84 to 0.99 |
RD (cm) | 23.6 (6.3) | 18.0 (5.0) | 0.18 | −0.15 to 0.53 |
SLS-L (s) | 27.6 (16.6) | 27.8 (16.5) | 0.99 | 0.99 to 0.99 |
SLS-R (s) | 29.8 (14.7) | 29.7 (14.7) | >0.99 | 0.99 to >0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarnig, G.; Jaunig, J.; Kerbl, R.; Lima, R.A.; van Poppel, M.N.M. A Novel Monitoring System (AUT FIT) for Anthropometrics and Physical Fitness in Primary School Children in Austria: A Cross-Sectional Pilot Study. Sports 2022, 10, 4. https://doi.org/10.3390/sports10010004
Jarnig G, Jaunig J, Kerbl R, Lima RA, van Poppel MNM. A Novel Monitoring System (AUT FIT) for Anthropometrics and Physical Fitness in Primary School Children in Austria: A Cross-Sectional Pilot Study. Sports. 2022; 10(1):4. https://doi.org/10.3390/sports10010004
Chicago/Turabian StyleJarnig, Gerald, Johannes Jaunig, Reinhold Kerbl, Rodrigo Antunes Lima, and Mireille N. M. van Poppel. 2022. "A Novel Monitoring System (AUT FIT) for Anthropometrics and Physical Fitness in Primary School Children in Austria: A Cross-Sectional Pilot Study" Sports 10, no. 1: 4. https://doi.org/10.3390/sports10010004
APA StyleJarnig, G., Jaunig, J., Kerbl, R., Lima, R. A., & van Poppel, M. N. M. (2022). A Novel Monitoring System (AUT FIT) for Anthropometrics and Physical Fitness in Primary School Children in Austria: A Cross-Sectional Pilot Study. Sports, 10(1), 4. https://doi.org/10.3390/sports10010004