Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Methods
2.5. Study Selection
2.6. Data Collection Process and Items
2.7. Risk of Bias
2.8. Data Analysis and Synthesis
3. Results
3.1. Study Selection
3.2. Risk of Bias within Studies
3.3. Results of Individual Studies
4. Discussion
4.1. Effects on 1-RM
4.2. Effects on Sprint Performance
4.3. Effects on CMJ
4.4. Velocity Loss
4.5. Limitations and Future Directions
4.6. Practical Applications
- A VBRT program with three sets per exercise performed twice a week might have significant changes in the 1-RM, CMJ, and sprint performance for a period of eight weeks;
- Training at maximum intended concentric velocity is a key requirement to optimize muscle strength and gains in high-speed actions using the VBRT methodology;
- It is necessary that the complete rest (>3 min) between sets are necessary to work at the maximum intended velocity at high intensity;
- The load-velocity profile and mean propulsive velocity are valid options for monitoring intensity and load progression;
- The magnitude of VL in the sets is a practical and objective method to program the training volume during RT;
- A high magnitude of VL in the set is not necessary to achieve the best results on muscle strength and athletic performance. In fact, lower velocity losses (5–10%) guarantee less fatigue accumulation, which might lead to quicker recovery.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiele, D.; Prieske, O.; Lesinski, M.; Granacher, U. Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers. Front. Physiol. 2020, 11, 888. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The effect of strength training on performance in endurance athletes. Sports Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [Green Version]
- Crowley, E.; Harrison, A.J.; Lyons, M. The Impact of Resistance Training on Swimming Performance: A Systematic Review. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef]
- Thiele, D.; Prieske, O.; Chaabene, H.; Granacher, U. Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers: A systematic review with meta-analysis. J. Sports Sci. 2020, 38, 1186–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.; Fisher, J.; Grgic, J.; Haun, C.; Helms, E.; Phillips, S.; Steele, J.; Vigotsky, A. Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. Int. J. Strength Cond. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; Romance, R.; Schoenfeld, B.J.; García, M.; Petro, J.L.; Bonilla, D.A.; Kreider, R.B.; Martín-Rivera, F.; Benítez-Porres, J. Effects of cluster training on body composition and strength in resistance-trained men. Isokinet. Exerc. Sci. 2020, 28, 391–399. [Google Scholar] [CrossRef]
- Cannataro, R.; Carbone, L.; Petro, J.L.; Cione, E.; Vargas, S.; Angulo, H.; Forero, D.A.; Odriozola-Martínez, A.; Kreider, R.B.; Bonilla, D.A. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int. J. Mol. Sci. 2021, 22, 9724. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; García-Sillero, M.; Romance, R.; Medina, I.; Bonilla, D.A.; Schoenfeld, B.J.; Petro, J.L.; Kreider, R.B.; Benítez-Porres, J. Effects Of Undulating Vs. Linear Periodization On Body Composition In Untrained Older Adults. Med. Sci. Sports Exerc. 2020, 52, 736. [Google Scholar] [CrossRef]
- Kim, Y.; Lai, B.; Mehta, T.; Thirumalai, M.; Padalabalanarayanan, S.; Rimmer, J.H.; Motl, R.W. Exercise Training Guidelines for Multiple Sclerosis, Stroke, and Parkinson Disease: Rapid Review and Synthesis. Am. J. Phys. Med. Rehabil. 2019, 98, 613–621. [Google Scholar] [CrossRef]
- Yang, Z.; Scott, C.A.; Mao, C.; Tang, J.; Farmer, A.J. Resistance exercise versus aerobic exercise for type 2 diabetes: A systematic review and meta-analysis. Sports Med. 2014, 44, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Spiering, B.A.; Kraemer, W.J.; Anderson, J.M.; Armstrong, L.E.; Nindl, B.C.; Volek, J.S.; Maresh, C.M. Resistance exercise biology: Manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008, 38, 527–540. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Conceicao, F.; Fernandes, J.; Lewis, M.; Gonzalez-Badillo, J.J.; Jimenez-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBurnie, A.J.; Allen, K.P.; Garry, M.; Martin, M.; Thomas, D.S.; Jones, P.A.; Comfort, P.; McMahon, J.J. The Benefits and Limitations of Predicting One Repetition Maximum Using the Load-Velocity Relationship. Strength Cond. J. 2019, 41, 28–40. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Sanchez-Medina, L.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Relationship Between Velocity Loss and Repetitions in Reserve in the Bench Press and Back Squat Exercises. J. Strength Cond. Res. 2020, 34, 2537–2547. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Rodriguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.I.; Gomes, P.S. Movement velocity in resistance training. Sports Med. 2003, 33, 427–438. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Sanchez-Medina, L.; Suarez-Arrones, L.; Gonzalez-Badillo, J.J. Effects of Velocity Loss During Resistance Training on Performance in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Izquierdo, M.; Gorostiaga, E.M. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J. Strength Cond. Res. 2006, 20, 73–81. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Flanagan, S.D.; Shurley, J.P.; Todd, J.S.; Todd, T.C. Understanding the Science of Resistance Training: An Evolutionary Perspective. Sports Med. 2017, 47, 2415–2435. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E. Relative Load Prediction by Velocity and the OMNI-RES 0-10 Scale in Parallel Squat. J. Strength Cond. Res. 2017, 31, 1585–1591. [Google Scholar] [CrossRef]
- Schilling, B.K.; Falvo, M.J.; Chiu, L.Z. Force-velocity, impulse-momentum relationships: Implications for efficacy of purposefully slow resistance training. J. Sports Sci. Med. 2008, 7, 299–304. [Google Scholar] [PubMed]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Torres-Torrelo, J.; Mora-Custodio, R.; Marques, M.C.; Gonzalez-Badillo, J.J. Effort Index as a Novel Variable for Monitoring the Level of Effort During Resistance Exercises. J. Strength Cond. Res. 2018, 32, 2139–2153. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Sanchez-Medina, L.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-Garcia, A.G.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Velocity-based resistance training: Impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl. Physiol. Nutr. Metab. 2020, 45, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Baroni, B.M.; Izquierdo, M.; Cadore, E.L. Effects of Resistance Training Performed to Failure or Not to Failure on Muscle Strength, Hypertrophy, and Power Output: A Systematic Review With Meta-Analysis. J. Strength Cond. Res. 2021, 35, 1165–1175. [Google Scholar] [CrossRef]
- Davies, T.; Orr, R.; Halaki, M.; Hackett, D. Effect of Training Leading to Repetition Failure on Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 487–502. [Google Scholar] [CrossRef]
- Izquierdo, M.; Ibanez, J.; Gonzalez-Badillo, J.J.; Hakkinen, K.; Ratamess, N.A.; Kraemer, W.J.; French, D.N.; Eslava, J.; Altadill, A.; Asiain, X.; et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J. Appl. Physiol. 2006, 100, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Aagaard, P.; Sanchez-Medina, L.; Ribas-Serna, J.; Mora-Custodio, R.; Otero-Esquina, C.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Time Course of Recovery From Resistance Exercise With Different Set Configurations. J. Strength Cond. Res. 2020, 34, 2867–2876. [Google Scholar] [CrossRef]
- Bautista, I.J.; Chirosa, I.J.; Robinson, J.E.; Chirosa, L.J.; Martinez, I. Concurrent Validity of a Velocity Perception Scale to Monitor Back Squat Exercise Intensity in Young Skiers. J. Strength Cond. Res. 2016, 30, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Guerriero, A.; Varalda, C.; Piacentini, M.F. The Role of Velocity Based Training in the Strength Periodization for Modern Athletes. J. Funct. Morphol. Kinesiol. 2018, 3, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo de Mora, J.; Saez de Villarreal, E. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J. Strength Cond. Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Sanchez-Valdepenas, J.; Cornejo-Daza, P.J.; Piqueras-Sanchiz, F.; Mora-Vela, R.; Sanchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med. Sci. Sports Exerc. 2020, 52, 1752–1762. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef] [PubMed]
- Barjaste, A.; Mirzaei, B. The periodization of resistance training in soccer players: Changes in maximal strength, lower extremity power, body composition and muscle volume. J. Sports Med. Phys. Fit. 2018, 58, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Perez, A.; Alejo, L.B.; Valenzuela, P.L.; Gil-Cabrera, J.; Talavera, E.; Luia, A.; Barranco-Gil, D. Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial. Front. Physiol. 2021, 12, 586113. [Google Scholar] [CrossRef]
- Wlodarczyk, M.; Adamus, P.; Zielinski, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes-A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef]
- Lindberg, K.; Solberg, P.; Ronnestad, B.R.; Frank, M.T.; Larsen, T.; Abusdal, G.; Berntsen, S.; Paulsen, G.; Sveen, O.; Seynnes, O.; et al. Should we individualize training based on force-velocity profiling to improve physical performance in athletes? Scand. J. Med. Sci. Sports 2021, 31, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; Garcia-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef]
- Perez-Castilla, A.; Boullosa, D.; Garcia-Ramos, A. Reliability and Validity of the iLOAD Application for Monitoring the Mean Set Velocity During the Back Squat and Bench Press Exercises Performed Against Different Loads. J. Strength Cond. Res. 2021, 35, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–9. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, 1–8. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Randell, A.D.; Cronin, J.B.; Keogh, J.W.; Gill, N.D.; Pedersen, M.C. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J. Strength Cond. Res. 2011, 25, 87–93. [Google Scholar] [CrossRef]
- Ramos Veliz, R.; Requena, B.; Suarez-Arrones, L.; Newton, R.U.; Saez de Villarreal, E. Effects of 18-week in-season heavy-resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players. J. Strength Cond. Res. 2014, 28, 1007–1014. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Gorostiaga, E.M.; Gonzalez-Badillo, J.J. Effect of movement velocity during resistance training on neuromuscular performance. Int. J. Sports Med. 2014, 35, 916–924. [Google Scholar] [CrossRef]
- Dolezal, S.M.; Frese, D.L.; Llewellyn, T.L. The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes. Int. J. Exerc. Sci. 2016, 9, 657–666. [Google Scholar]
- Pérez-Castilla, A.; García-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J. Sports Sci. 2017, 36, 1331–1339. [Google Scholar] [CrossRef]
- Martinez-Cava, A.; Hernandez-Belmonte, A.; Courel-Ibanez, J.; Moran-Navarro, R.; Gonzalez-Badillo, J.J.; Pallares, J.G. Bench Press at Full Range of Motion Produces Greater Neuromuscular Adaptations Than Partial Executions After Prolonged Resistance Training. J. Strength Cond. Res. 2022, 36, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Orange, S.T.; Metcalfe, J.; Robinson, A.; Applegarth, M.J.; Liefeith, A. Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2020, 15, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Tufano, J.J.; Weakley, J.J.S.; Wu, S.; Jukic, I.; Nosaka, K. Superior Changes in Jump, Sprint, and Change-of-Direction Performance but Not Maximal Strength Following 6 Weeks of Velocity-Based Training Compared With 1-Repetition-Maximum Percentage-Based Training. Int. J. Sports Physiol. Perform. 2020, 16, 232–242. [Google Scholar] [CrossRef]
- Sanchez-Moreno, M.; Cornejo-Daza, P.J.; Gonzalez-Badillo, J.J.; Pareja-Blanco, F. Effects of Velocity Loss During Body Mass Prone-Grip Pull-up Training on Strength and Endurance Performance. J. Strength Cond. Res. 2020, 34, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef]
- Pallares, J.G.; Cava, A.M.; Courel-Ibanez, J.; Gonzalez-Badillo, J.J.; Moran-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Shattock, K.; Tee, J.C. Autoregulation in Resistance Training: A Comparison of Subjective Versus Objective Methods. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Martinez-Cava, A.; Yanez-Garcia, J.M.; Hernandez-Belmonte, A.; Mora-Custodio, R.; Moran-Navarro, R.; Pallares, J.G.; Gonzalez-Badillo, J.J. Linear programming produces greater, earlier and uninterrupted neuromuscular and functional adaptations than daily-undulating programming after velocity-based resistance training. Physiol. Behav. 2021, 233, 113337. [Google Scholar] [CrossRef] [PubMed]
- Riscart-Lopez, J.; Rendeiro-Pinho, G.; Mil-Homens, P.; Soares-daCosta, R.; Loturco, I.; Pareja-Blanco, F.; Leon-Prados, J.A. Effects of Four Different Velocity-Based Training Programming Models on Strength Gains and Physical Performance. J. Strength Cond. Res. 2021, 35, 596–603. [Google Scholar] [CrossRef]
- Jimenez-Reyes, P.; Castano-Zambudio, A.; Cuadrado-Penafiel, V.; Gonzalez-Hernandez, J.M.; Capelo-Ramirez, F.; Martinez-Aranda, L.M.; Gonzalez-Badillo, J.J. Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ 2021, 9, e10942. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas-Serna, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Freitas, T.T.; Calleja-González, J.; Carlos-Vivas, J.; Marín-Cascales, E.; Alcaraz, P.E. Short-term optimal load training vs a modified complex training in semi-professional basketball players. J. Sports Sci. 2018, 37, 434–442. [Google Scholar] [CrossRef]
- Rogan, S.; Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef]
- Loturco, I.; Nakamura, F.Y.; Artioli, G.G.; Kobal, R.; Kitamura, K.; Cal Abad, C.C.; Cruz, I.F.; Romano, F.; Pereira, L.A.; Franchini, E. Strength and Power Qualities Are Highly Associated With Punching Impact in Elite Amateur Boxers. J. Strength Cond. Res. 2016, 30, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, J.M.; Nimphius, S.; Erickson, T.M. The acute effects of heavy-load squats and loaded countermovement jumps on sprint performance. J. Strength Cond. Res. 2005, 19, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernandez, C.; Torres-Ronda, L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports 2021, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- González Badillo, J.; Ribas Serna, J. Fuerza, Velocidad y Rendimiento Físico y Deportivo; ESM: Madrid, España, 2019. [Google Scholar]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Barnes, A. The Effectiveness of Two Methods of Prescribing Load on Maximal Strength Development: A Systematic Review. Sports Med. 2020, 50, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Picerno, P. Good Practice Rules for the Assessment of the Force-Velocity Relationship in Isoinertial Resistance Exercises. Asian J. Sports Med. 2017, 8, e15590. [Google Scholar] [CrossRef]
Reference | n (M:F) | Age, Body Mass and Stature | VBRT Program | Analyzed Variable and Change (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Groups (n) | Frequency (Days·wk−1) | Intensity | Volume | Duration (Weeks) | Device | |||||
Randell et al. [52] | 13 (13:0) | 25.7 ± 3.6 years; 188.5 ± 8.2 cm; 104.3 ± 10.0 kg | GVBRT1 (7): feedback GVBRT2 (6): no feedback | 3 | 40 kg 4–6 RM | 3–6 reps × 3–5 sets | 6 | Celesco PT5A-150 | CMJ (cm) | GVBRT1: 4.6 GVBRT2: 2.8 |
Horizontal Jump (cm) | GVBRT1: 2.6 * GVBRT2: 0.5 | |||||||||
Sprint 10 m | GVBRT1: 1.3 GVBRT2: 0.1 | |||||||||
Sprint 20 m | GVBRT1: 0.9 GVBRT2: 0.1 | |||||||||
Sprint 30 m | GVBRT1: 1.4 * GVBRT2: −0.3 | |||||||||
Ramos et al. [53] | 27 (27:0) | 20.4 ± 5.0 years; 180.3 ± 5.9 cm; 81.4 ± 8.4 kg | GVBRT (16) Gcontrol (11) | 2 | MPV: 0.7–1 | 4–8 reps × 3–4 sets | 18 | T-Force | CMJ (cm) | GVBRT: 6.9 † Gcontrol: 2.5 |
RMBP (kg) | GVBRT: 10.5 † * Gcontrol: 4.9 | |||||||||
RMSQ (kg) | GVBRT: 14.2 † * Gcontrol: 3.4 | |||||||||
Gonzalez-Badillo et al. [54] | 20 (20:0) | 21.9 ± 2.9 years; 177 ± 8 cm; 70.9 ± 8.0 kg | GVBRT HV (9) Gcontrol MV (11) | 3 | MPV: 0.79 (HV) 0.47 (MV) | 2–6 reps × 3–4 sets | 6 | T-Force | 1-RM (kg) | GVBRT: 18.2 * Gcontrol: 9.7 |
Pareja-Blanco et al. [55] | 21 (21:0) | 23.3 ± 3.2 years; 177 ± 7.0 cm; 73.6 ± 9.2 kg | GVBRT HV (10) Gcontrol MV (11) | 3 | MPV: 1.0 (HV) 0.84 (MV) | 2–8 reps × 3–4 sets | 6 | T-Force | CMJ (cm) | GVBRT: 8.9 * Gcontrol: 2.4 |
Sprint 10 m | GVBRT: −2.8 * Gcontrol: −1.1 | |||||||||
Sprint 20 m | GVBRT: −1.6 Gcontrol: −1.6 | |||||||||
Sprint 30 m | GVBRT: 18 * Gcontrol: 9.7 | |||||||||
Dolezal et al. [56] | 19 (10:9) | 19.9 ± 1.5 years; 178.9 ± 7.0 cm; 88.4 ± 19.5 kg | GVBRT M (10) GVBRT F (9) | 3 | 50–80% 1-RM | 2–8 reps × 3–6 sets | 12 | NA | RMSQ | GVBRT M: 14.3 † GVBRT F: 18.4 † |
Pareja-Blanco et al. [38] | 22 (24:0) | 22.7 ± 1.9 years; 176 ± 6 cm; 5.8 ± 7.0 kg | GVBRT1: 20% VL (12) GVBRT2: 40% VL (10) | 2 | MPV 0.85–0.62 | 3 sets with 20% or 40% VL | 8 | T-Force | RM | GVBRT1: 17.6 † * GVBRT2: 13.5 † * |
CMJ | GVBRT1: 9.1 † * GVBRT2: 3.7 | |||||||||
Sprint 20 m | GVBRT1: −0.3 GVBRT2: 1 | |||||||||
Pareja-Blanco et al. [22] | 16 (16:0) | 23.8 ± 3.4 years, 174 ± 7 cm; 75.5 ± 8.6 kg | GVBRT1: 15% VL (8) GVBRT2: 30% VL (8) | 3 | MPV 1.13–0.82 | 3 sets with 15% or 30% VL | 6 | T-Force | RM | GVBRT1: 8.9 † GVBRT2: 3.6 |
CMJ | GVBRT1: 5.3 † * GVBRT2: −2.6 | |||||||||
Sprint 30 m | GVBRT1: −0.5 GVBRT2: −0.2 | |||||||||
Perez-Castilla et al. [57] | 20 (20:0) | 22.0 ± 0.2 years; 175.7 ± 1.5 cm; 77 ± 18.4 kg | GVBRT1: 10% VL (10) GVBRT2: 20% VL (10) | 2 | MPV 1.20 | 36 reps with 10% or 20% VL | 4 | T-Force | RM | GVBRT1: 2.0 GVBRT2: 3.6 |
CMJ | GVBRT1: 6.3 † * GVBRT2: 3.6 † | |||||||||
Sprint 15 m | GVBRT1: 0.41 GVBRT2: 0.41 | |||||||||
Martinez-Cava et al. [58] | 50 (50:0) | 24.0 ± 4.7 years; 176.2 ± 8.4 cm; 73.4 ± 9.9 kg | GBP (11) GBP2/3 (13) GBP1/3 (12) Gcontrol (12) | 2 | MPV 60–80% 1-RM | 4–8 reps × 4–5 sets | 10 | T-Force | RMBP | GBP: 12.3 † GBP2/3: 7.01 GBP1/3: −0.26 Gcontrol: −2.9 |
Galiano et al. [39] | 28 (28:0) | 23.0 ± 3.2 years; 175.8 ± 4.7 cm; 73.8 ±10.8 kg | GVBRT1: 5% VL (15) GVBRT2: 20% VL (13) | 2 | MPV 1.14 | 3 sets with 5% or 20% VL | 7 | T-Force | RM | GVBRT1: 10.7 † GVBRT2: 13.6 † |
CMJ | GVBRT1: 9.3 † GVBRT2: 8.8 † | |||||||||
Sprint 20 m | GVBRT1: −4.9 † GVBRT2: −3.6 † | |||||||||
Orange et al. [59] | 27 (27:0) | 17 ± 1 years; 179 ± 5.8 cm; 83.15 ± 11.9 kg | GVBRT (12) GPBT (15) | 2 | 60–80% 1-RM | 5 reps × 5 sets | 7 | OptoJump Witty Timing System | RM | GVBRT: 0.38 † * GPBT: 0.51 † |
CMJ | GVBRT: 0.53 † GPBT: 0.40 † | |||||||||
Sprint 5 m | GVBRT: −0.09 GPBT: −0.69 † | |||||||||
Sprint 10 m | GVBRT: −0.41 † GPBT: −0.81 † | |||||||||
Sprint 20 m | GVBRT: −0.48 † GPBT: −1.02 † | |||||||||
Sprint 30 m | GVBRT: −0.70 † GPBT: −0.78 † | |||||||||
Banyard et al. [60] | 24 (24:0) | 25.5± 6 years 84.7± 6.8 kg | GVBRT (12) GPBT (12) | 3 | MPV 0.84–0.62 | 5 reps × 5 sets | 6 | NA | RM CMJ Sprint 5 m Sprint 10 m Sprint 20 m | GVBRT: 11.3 † GVBRT: 7.4 † * GVBRT: −6.5 * GVBRT: −3.8 † * GVBRT: −1.8 |
Sanchez-Moreno et al. [61] | 29 (29:0) | 26.5 ± 6.3 years; 176.1 ± 5.3 cm; 74.3 ± 6.1 kg | GVBRT1: 25% VL (15) GVBRT2: 50% VL (14) | 2 | MPV 0.84 | 2–4 sets with 25% or 50% VL | 8 | T-Force | RM | GVBRT1: 5.4 † * GVBRT2: 0.7 |
Dorrell et al. [62] | 16 (16:0) | 22.8 ± 4.5 years; 180.2 ± 6.4 cm; 89.3 ± 13.3 kg | GVBRT1 (8) GPBT (8) | 2 | MPV 0.51–0.91 | 3 sets with 20% VL | 6 | GymAware PowerTool | RMSQ | GVBRT: 9.3 † GPBT: 9.0 † |
RMBP | GVBRT: 7.3 † * GPBT: 4.8 † | |||||||||
RMOP | GVBRT: 6.5 † GPBT: 6.1 † | |||||||||
RMDL | GVBRT: 6.3 † GPBT: 2.9 | |||||||||
CMJ | GVBRT: 4.9 † * GPBT: 1.0 | |||||||||
Pallares et al. [63] | 53 (53:0) | 23.0 ± 4.4 years; 174.0 ± 7.4 cm; 76.0 ± 12.8 kg | GVBRT1 FSQ (12) GVBRT2 PSQ (13) GPBT HSQ (11) Gcontrol (14) | 2–4 | MPV 0.43–0.79 | 4–8 reps × 4–5 sets | 10 | T-Force | RMSQ | GVBRT1: 16.4 † GVBRT2: 10.3 † GVBRT3: 2.6 † Gcontrol: −8.08 † |
PP | GVBRT1: 6.5 GVBRT2: 5.9 GVBRT3: −1.2 Gcontrol: −0.2 | |||||||||
CMJ | GVBRT1: 12.8 † GVBRT2: 9.1 GVBRT3: 5.3 Gcontrol: −3.4 | |||||||||
Sprint 20 m | GVBRT1: −2.4 GVBRT2: −1.0 GVBRT3: 0.0 Gcontrol: 1.7 | |||||||||
Pareja-Blanco et al. [40] | 55 (55:0) | 24.1 ± 4.3 years, 175 ± 6 cm; 75.5 ± 9.7 kg | GVBRT1: 0% VL (14) GVBRT2: 10% VL (14) GVBRT3: 20% VL (13) GVBRT4: 40% VL (14) | 2 | MPV 70–85% 1-RM | 3 sets with 0%, 10%, 20% or 40% VL | 8 | T-Force | RM | GVBRT1: 13.7 † GVBRT2: 18.1 † GVBRT3: 14.9 † GVBRT4: 12.3 † |
Shattock et al. [64] | 20 (20:0) | 22 ± 3 years; 94.3 ± 15.5 kg | GVBRT (10) GRPE (10) | 3–4 | MPV: 70–85% | 3 reps × 8 sets or 4 reps × 6 sets | 12 | NA | CMJ | GVBRT: 8.2 † * GRPE: 3.8 † |
RMSQ | GVBRT: 7.5 † * GRPE: 3.5 † | |||||||||
RMBP | GVBRT: 7.7 † GRPE: 3.8 † | |||||||||
Sprint 10 m | GVBRT: −0.4 GRPE: 0.5 | |||||||||
Sprint 20 m | GVBRT: −0.4 GRPE: 0.1 | |||||||||
Rodriguez-Rosell et al. [30] | 25 (25:0) | 22.6 ± 3 years; 74.5 ± 10 kg | GVBRT1: 10% VL (12) GVBRT2: 30% VL (13) | 2 | MPV 0.84–0.60 | 3 sets with 10% or 30% VL | 8 | T-Force | 1-RM | GVBRT1: 17.9 † GVBRT2: 14.9 † |
CMJ | GVBRT1: 9.2 † GVBRT2: 5.4 † | |||||||||
Sprint 10 m | GVBRT1: −0.6 † GVBRT2: 0.7 † | |||||||||
Sprint 20 m | GVBRT1: −1.5 † GVBRT2: −0.4 † | |||||||||
Rodriguez-Rosell et al. [29] | 33 (33:0) | 22 ± 3 years; 72 ± 8 kg | GVBRT1: 10% VL (11) GVBRT2: 30% VL (11) GVBRT3: 45% VL (11) | 2 | MPV 1.07–0.84 | 3 sets with 10%, 30% or 45% VL | 8 | T-Force | RMSQ | GVBRT1: 22.1 † GVBRT2: 22.0 † GVBRT3: 15.4 † |
CMJ | GVBRT1: 12.0 † * GVBRT2: 5.0 † GVBRT3: 4.6 † | |||||||||
Sprint 10 m | GVBRT1: −3.4 † GVBRT2: −1.1 GVBRT3: 0.0 | |||||||||
Sprint 20 m | GVBRT1: −2.3 † GVBRT2: −1.9 † GVBRT3: −0.6 | |||||||||
Rodriguez-Rosell et al. [65] | 32 (32:0) | 23.2 ± 3 years; 75.8 ± 9 kg | GVBRT1 LP: (16) GVBRT2 UP: (16) | 2 | MPV 1.16–0.68 | 3 sets with 15% VL | 8 | T-Force | 1-RM | GVBRT1: 14.2 † GVBRT2: 8.5 † |
CMJ | GVBRT1: 12.2 † GVBRT2: 8.8 † | |||||||||
Riscart-Lopez et al. [66] | 43 (43:0) | 22.9 ± 4.8 years; 71.7 ± 7.6 kg | GVBRT1 LP: (11) GVBRT2 UP: (10) GVBRT3 RP: (11) GVBRT4 CP: (11) | 2 | MPV 1.14–0.59 | 3 sets with 20%VL | 8 | T-Force | 1-RM | GVBRT1: 17.2 † GVBRT2: 10.9 † GVBRT3: 18.0 † GVBRT4: 15.23 † |
CMJ | GVBRT1: 5.2 † GVBRT2: 8.0 † GVBRT3: 10.8 † GVBRT4: 7.2 † | |||||||||
Sprint 20 m | GVBRT1: −2.0 † GVBRT2: −1.3 † GVBRT3: −2.0 † GVBRT4: −1.6 † | |||||||||
Jiménez-Reyes et al. [67] | 24 (24:0) | 23.1 ± 3 years; 73.6 ± 6 kg | GVBRT1 AL: (13) GVBRT2 NAL: (11) | 2 | MPV 1.13–0.68 1-RM 50–80% | 2–8 reps × 3–4 sets | 8 | T-Force | 1-RM | GVBRT1: 12.7 † * GVBRT2: 28.9 † |
CMJ | GVBRT1: 7.9 † * GVBRT2: 16.1 † * | |||||||||
Sprint 10 m | GVBRT1: −1.2 † GVBRT2: −2.2 † | |||||||||
Sprint 20 m | GVBRT1: −0.95 † * GVBRT2: −1.99 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. https://doi.org/10.3390/sports10010008
Baena-Marín M, Rojas-Jaramillo A, González-Santamaría J, Rodríguez-Rosell D, Petro JL, Kreider RB, Bonilla DA. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports. 2022; 10(1):8. https://doi.org/10.3390/sports10010008
Chicago/Turabian StyleBaena-Marín, Mateo, Andrés Rojas-Jaramillo, Jhonatan González-Santamaría, David Rodríguez-Rosell, Jorge L. Petro, Richard B. Kreider, and Diego A. Bonilla. 2022. "Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials" Sports 10, no. 1: 8. https://doi.org/10.3390/sports10010008
APA StyleBaena-Marín, M., Rojas-Jaramillo, A., González-Santamaría, J., Rodríguez-Rosell, D., Petro, J. L., Kreider, R. B., & Bonilla, D. A. (2022). Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports, 10(1), 8. https://doi.org/10.3390/sports10010008