Dietary Intake of Adults Who Participate in CrossFit® Exercise Regimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Intake Survey
2.4. Food Frequency Questionnaire
2.5. Statistical Analysis
3. Results
3.1. Respondents’ Characteristics
3.2. Nutritional Evaluation
3.2.1. Energy Intake
3.2.2. CHO and Fiber Intake
3.2.3. PRO Intake
3.2.4. Fat Intake
3.2.5. Fatty Acid Intake
3.2.6. Alcohol Intake
3.2.7. Vitamin and Mineral Intake
3.2.8. Estimation of Nutritional Under-Reporting of Dietary Intake
3.3. Nutritional and Fitness Goals, Exercise Habits, and Clinical Outcomes
3.3.1. Nutritional and Fitness Goals
3.3.2. Exercise Habits
3.3.3. Disease and Prescriptions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-intensity functional training (HIFT): Definition and research implications for improved fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glassman, G. What is CrossFit? CrossFit J. 2004, 56, 1–7. Available online: http://library.crossfit.com/free/pdf/what_is_crossfit.pdf (accessed on 1 March 2022).
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are changes in physical work capacity induced by high-intensity functional training related to changes in associated physiologic measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glassman, G. What is fitness? CrossFit J. 2002, 1, 1–11. Available online: https://library.crossfit.com/free/pdf/CFJ-trial.pdf (accessed on 1 March 2022).
- Green, E.S.; Williams, E.R.; Feito, Y.; Jenkins, N.T. Physiological and Anthropometric Differences among Endurance, Strength and High-Intensity Functional Training Participants: A Cross-Sectional Study. Res. Q. Exerc. Sport. 2021, in press. [CrossRef]
- O’Donoghue, G.; Blake, C.; Cunningham, C.; Lennon, O.; Perrotta, C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes. Rev. 2021, 22, e13137. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Francois, M.E.; Gillen, J.B.; Little, J.P. Carbohydrate-restriction with high-intensity interval training: An optimal combination for treating metabolic diseases? Front. Nutr. 2017, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Gogojewicz, A.; Sliwicka, E.; Durkalec-Michalski, K. Assessment of dietary intake and nutritional status in CrossFit-trained individuals: A descriptive study. Int. J. Environ. Res. Public Health 2020, 17, 4772. [Google Scholar] [CrossRef]
- De Souza, R.A.S.; da Silva, A.G.; de Souza, M.F.; Ferreira Souza, L.K.; Roschel, H.; da Silva, S.F.; Saunders, B. A systematic review of CrossFit workouts and dietary and supplementation interventions to guide nutritional strategies and future research in CrossFit. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Quaresma, M.V.L.; Marques, C.G.; Nakamoto, F.P. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: A systematic review of clinical studies. Nutrition 2021, 82, 110994. [Google Scholar] [CrossRef] [PubMed]
- Glassman, G. The CrossFit training guide. CrossFit J. 2010, 30, 1–115. Available online: http://library.crossfit.com/free/pdf/CFJ_English_Level1_TrainingGuide.pdf (accessed on 1 March 2022).
- Maxwell, C.; Ruth, K.; Friesen, C. Sports nutrition knowledge, perceptions, resources, and advice given by certified CrossFit trainers. Sports 2017, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute. Diet History Questionnaire (DHQ) III. 2018. Available online: https://epi.grants.cancer.gov/dhq3/ (accessed on 31 January 2021).
- Atkinson, R.; Flint, J. Snowball sampling. In The SAGE Encyclopedia of Social Science Research Methods; Lewis-Beck, M.S., Bryman, A., Liao, T.F., Eds.; Sage Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Hand, G.A.; Blair, S.N. Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef]
- Mazic, S.; Djelic, M.; Suzic, J.; Suzic, S.; Dekleva, M.; Radovanovic, D.; Scepanovic, L.; Starcevic, V. Overweight in trained subjects-are we looking at wrong numbers? (Body mass index compared with body fat percentage in estimating overweight in athletes). Gen. Physiol. Biophys. 2009, 28, 200–2004. [Google Scholar]
- Britton, A.; Ben-Shlomo, Y.; Benzeval, M.; Kuh, D.; Bell, S. Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies. BMC Med. 2015, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Breslow, R.A.; Castle, I.-J.P.; Chen, C.M.; Graubard, B.I. Trends in Alcohol Consumption among Older Americans: National Health Interview Surveys, 1997 to 2014. Alcohol. Clin. Exp. Res. 2017, 41, 976–986. [Google Scholar] [CrossRef]
- Parr, E.B.; Camera, D.; Areta, J.; Burke, L.M.; Phillips, S.; Hawley, J.A.; Coffey, V.G. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PLoS ONE 2014, 9, e88384. [Google Scholar] [CrossRef] [Green Version]
- Lecoultre, V.; Schutz, Y. Effect of a small dose of alcohol on the endurance performance of trained cyclists. Alcohol Alcohol. 2009, 44, 278–283. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, V.; Bégin, C.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in dietary intakes: What is the contribution of motivational variables? J. Hum. Nutr. Diet. 2015, 28, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, P.; Block, G. Dietary intake, dietary patterns, and changes with age: An epidemiological perspective. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drenowatz, C. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance. Adv. Nutr. 2015, 6, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner-McGrievy, G.M.; Wright, J.A.; Migneault, J.P.; Quintiliani, L.; Friedman, R.H. The interaction between dietary and life goals: Using goal systems theory to explore healthy diet and life goals. Health Psychol. Behav. Med. 2014, 2, 759–769. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; Sales, A.; Carlson, L.; Steele, J. A comparison of the motivational factors between CrossFit participants and other resistance exercise modalities: A pilot study. Sports Med. Phys. Fit. 2017, 57, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Perret-Guillaume, C.; Joly, L.; Benetos, A. Heart rate as a risk factor for cardiovascular disease. Prog. Cardiovasc. Dis. 2009, 52, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.S.; Cunningham, T.; Hardin, K.M.; Liu, E.; Malhotra, R.; Nayor, M.; Lewis, G.D.; Ho, J.E. Sex differences in cardiometabolic traits and determinants of exercise capacity in heart failure with preserved ejection fraction. JAMA Cardiol. 2020, 5, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F. Gender differences in the regulation of blood pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, E.; Floras, J.S.; Harvey, P.J. Estrogen status and the renin angiotensin aldosterone system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R498–R500. [Google Scholar] [CrossRef]
- Martins, D.; Tareen, N.; Pan, D.; Norris, K. The relationship between body mass index, blood pressure and pulse rate among normotensive and hypertensive participants in the third National Health and Nutrition Examination Survey (NHANES). Cell. Mol. Biol. 2003, 49, 1305–1309. [Google Scholar]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of exercise on the resting heart rate: A systematic review and meta-analysis of interventional studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [Green Version]
- Silberstein, L.R.; Striegel-Moore, R.H.; Timko, C.; Rodin, J. Behavioral and psychological implications of body dissatisfaction: Do men and women differ? Sex Roles 1988, 19, 219–232. [Google Scholar] [CrossRef]
- Jonason, P.K. An evolutionary psychology perspective on sex differences in exercise behaviors and motivations. J. Soc. Psychol. 2007, 147, 5–14. [Google Scholar] [CrossRef]
- Craft, B.B.; Carroll, H.A.; Lustyk, M.K.B. Gender differences in exercise habits and quality of life reports: Assessing the moderating effects of reasons for exercise. Int. J. Lib. Arts Soc. Sci. 2014, 2, 65–76. [Google Scholar]
- Tinetti, M.E.; Williams, C.S. Falls, injuries due to falls, and the risk of admission to a nursing home. N. Engl. J. Med. 1997, 337, 1279–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloszy, J.O. The biology of aging. Mayo Clin. Proc. 2000, 75, S3–S8. [Google Scholar] [CrossRef]
- Dutta, C.; Hadley, E.C. The significance of sarcopenia in old age. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Horwath, C.C. Nutrition goals for older adults: A review. Gerontologist 1991, 31, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Stehr, P.; Lander, H.L.; Rossmann, C. Beliefs and motivation regarding physical activity among older adults in Germany: Results of a qualitative study. Int. J. Qual. Stud. Health Well-Being 2021, 16, 1932025. [Google Scholar] [CrossRef] [PubMed]
- Kuehner, C. Gender differences in unipolar depression: An update of epidemiological findings and possible explanations. Acta Psychiatr. 2003, 108, 163–174. [Google Scholar] [CrossRef]
- Seedat, S.; Scott, K.M.; Angermeyer, M.C.; Berglund, P.; Bromet, E.J.; Brugha, T.S.; Demyttenaere, K.; de Girolamo, G.; Haro, J.M.; Jin, R.; et al. Cross-national associations between gender and mental disorders in the WHO World Mental Health Surveys. Arch. Gen. Psychiatry 2009, 6, 785–795. [Google Scholar] [CrossRef]
- Pratt, L.; Brody, D. Depression and obesity in the US adult household population, 2005–2010. NCHS Data Brief. 2014, 167, 1–8. [Google Scholar]
- Poirier, P.; Giles, T.; Bray, G.; Hong, Y.; Stern, J.; Pi-Sunyer, F.; Eckel, R. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 Amercian Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2005, 113, 898–918. [Google Scholar]
- Ganz, M.L.; Wintfeld, N.; Li, Q.; Alas, V.; Langer, J.; Hammer, M. The association of body mass index with the risk of type 2 diabetes: A case–control study nested in an electronic health records system in the United States. Diabetol. Metab. Syndr. 2014, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular risks associated with gender and aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanKim, N.A.; Corliss, H.L.; Jun, H.-J.; Calzo, J.P.; AlAwadhi, M.; Austin, S.B. Gender expression and sexual orientation differences in diet quality and eating habits from adolescence to young adulthood. J. Acad. Nutr. Diet. 2019, 119, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
n | All | n | Female | n | Male | p-Value | |
---|---|---|---|---|---|---|---|
Age (y) | 449 | 36.55 (11.38) | 290 | 35.37 (10.91) | 159 | 38.69 (11.92) | p = 0.003 |
Body mass index (kg·m2) | 443 | 25.56 (4.24) | 286 | 24.95 (4.23) | 157 | 26.67 (4.03) | p < 0.001 |
Waist-to-hip ratio | 247 | 0.83 (0.08) | 182 | 0.81 (0.07) | 65 | 0.89 (0.06) | p < 0.001 |
Resting heart rate (bpm) | 401 | 55.93 (8.98) | 258 | 57.32 (8.83) | 143 | 53.42 (8.72) | p < 0.001 |
SBP (mmHg) | 260 | 113.84 (10.66) | 164 | 110.88 (9.74) | 96 | 118.90 (10.30) | p < 0.001 |
DBP (mmHg) | 70.52 (8.13) | 69.22 (8.08) | 72.75 (0.79) | p < 0.001 | |||
CrossFit® participation (y) | 446 | 4.92 (3.08) | 287 | 4.71 (3.08) | 159 | 5.30 (3.04) | p > 0.05 |
Nutritional goal length (y) | 422 | 2.55 (3.58) | 270 | 2.33 (2.79) | 152 | 2.96 (4.64) | p > 0.05 |
Total exercise sessions·week−1 | 449 | 7.53 (2.80) | 290 | 7.46 (2.70) | 159 | 7.67 (2.99) | p = 0.052 |
CrossFit® sessions·week−1 | 4.54 (1.28) | 4.45 (1.23) | 4.65 (1.36) | p > 0.05 | |||
Additional strength sessions·week−1 | 1.36 (1.54) | 1.32 (1.52) | 1.43 (1.58) | p > 0.05 | |||
Additional aerobic sessions·week−1 | 1.63 (1.61) | 1.65 (1.58) | 1.60 (1.67) | P > 0.05 |
n | All | n | Female | n | Male | ANOVA | |
---|---|---|---|---|---|---|---|
Energy (kcals·d−1) | 449 | 1922.24 (790.16) | 290 | 1739.42 (624.99) | 159 | 2255.68 (939.47) | p < 0.001 |
CHO (% energy) | 42.63 (9.31) | 43.57 (8.98) | 40.92 (9.67) | p = 0.004 | |||
CHO (g·d−1) | 206.02 (103.13) | 189.46 (79.35) | 236.24 (131.21) | p < 0.001 | |||
Dietary fiber (g·d−1) | 24.54 (12.45) | 22.76 (10.68) | 27.80 (14.64 | p < 0.001 | |||
PRO (% energy) | 21.83 (4.78) | 21.83 (4.92) | 21.84 (4.53) | p > 0.05 | |||
PRO (g·d−1) | 106.62 (49.07) | 59.48 (39.92) | 126.94 (57.18) | p < 0.001 | |||
Fat (% energy) | 35.51 (7.40) | 34.72 (7.37) | 36.96 (7.25) | p = 0.002 | |||
Fat (g·d−1) | 75.86 (34.42) | 67.54 (30.21) | 91.05 (36.48) | p < 0.001 | |||
SFA (g·d−1) | 22.24 (11.09) | 19.88 (9.95) | 26.54 (11.76) | p < 0.001 | |||
MUFA (g·d−1) | 29.52 (14.54) | 25.97 (12.78) | 35.98 (15.36) | p < 0.001 | |||
PUFA (g·d−1) | 17.23 (8.01) | 15.53 (6.99) | 20.34 (8.81) | p < 0.001 | |||
CHOL (mg·d−1) | 356.87 (235.01) | 309.74 (202.65) | 442.84 (264.51) | p < 0.001 | |||
Alcohol (% energy) | 2.18 (3.40) | 2.10 (3.00) | 2.33 (4.01) | p > 0.05 | |||
Alcohol (g·d−1) | 5.48 (8.24) | 4.89 (6.87) | 6.57 (10.22) | p > 0.05 | |||
Micronutrient Score | 0.09 (0.02) | 0.10 (0.03) | 0.09 (0.02) | p < 0.001 | |||
Energy (kcals·kg−1·d−1) | 446 | 26.53 (10.74) | 287 | 26.14 (10.02) | 159 | 27.24 (11.91) | p > 0.05 |
CHO (g·kg−1·d−1) | 2.85 (1.43) | 2.85 (1.29) | 2.85 (1.66) | p > 0.05 | |||
PRO (g·kg−1·d−1) | 1.47 (0.65) | 1.44 (0.62) | 1.53 (0.71) | p > 0.05 | |||
Fat (g·kg−1·d−1) | 1.05 (0.47) | 1.01 (0.48) | 1.10 (0.46) | p = 0.059 | |||
Alcohol (g·kg−1·d−1) | 0.08 (0.11) | 0.07 (0.10) | 0.08 (0.13) | p > 0.05 |
Dependent Variable | Formula |
---|---|
Total exercise sessions·week−1 | 7.59 + 1.10 (goal: CVE) − 1.05 (goal: OW) |
Additional aerobic exercise sessions·week−1 other than CrossFit® | 1.53 + 0.63 (goal: CVE) − 0.43 (goal: OW) |
Additional strength exercise sessions·week−1 other than CrossFit® | 1.73 + 0.39 (goal: CVE) − 0.81 (goal: OW) |
Resting heart rate (bpm) | 51.21 − 4.78 (sex) + 0.40 (BMI) − 0.52 (EXS) |
Systolic blood pressure (mmHg) | 99.15 + 6.99 (sex) + 0.47 (BMI) |
Diastolic blood pressure (mmHg) | 59.39 + 2.75 (sex) + 0.39 (BMI) |
Males vs. Females | BMI | Age | EXS | |
---|---|---|---|---|
Lose fat mass | 0.426 (0.277, 0.657) | 1.126 (1.069, 1.187) | ns | ns |
Weight loss | 0.228 (0.125, 0.416) | 1.285 (1.200, 1.377) | ns | ns |
Weight maintenance | ns | 0.943 (0.891, 0.999) | ns | 0.916 (0.843, 0.944) |
Support performance | ns | 0.943 (0.899, 0.988) | ns | ns |
Gain muscle mass | 1.935 (1.275, 2.935) | 0.929 (0.884, 0.976) | 0.980 (0.963, 0.997) | ns |
Weight gain | 17.177 (4.623, 63.815) | 0.752 (0.606, 0.933) | 0.921 (0.869, 0.976) | ns |
Cardiovascular Endurance | 1.855 (1.141, 2.879) | ns | 0.976 (0.958, 0.994) | 1.147 (1.055, 1.246) |
Flexibility | 2.485 (1.664, 3.710) | ns | ns | 1.079 (1.006, 1.157) |
Strength | ns | ns | 0.973 (0.953, 0.993) | ns |
Overall well-being | ns | ns | 1.032 (1.009, 1.057) | 0.893 (0.832, 0.968) |
Males vs. Females | BMI | Age | EXS | |
---|---|---|---|---|
Diagnosis of mental disease | 0.366 (0.203, 0.659) | 1.067 (1.012, 1.124) | ns | ns |
Diagnosis of cardiovascular disease | ns | 1.156 (1.050, 1.273) | 1.125 (1.071, 1.182) | ns |
Diagnosis of metabolic disease | ns | 1.181 (1.085, 1.284) | ns | ns |
Diagnosis of skeletomuscular disease | ns | 0.680 (0.514, 0.901) | ns | ns |
Taking prescription medications (including birth control) | 0.246 (0.153, 0.396) | ns | 1.026 (1.008, 1.045) | ns |
Change in diagnosis or medication after participating in CrossFit® | ns | 1.103 (1.038, 1.172) | 1.037 (1.010, 1.065) | ns |
Change in disease symptoms after participating in CrossFit® | 0.552 (0.332, 0.918) | 1.077 (1.024, 1.133) | 1.021 (1.001, 1.042) | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearson, R.C.; Jenkins, N.T. Dietary Intake of Adults Who Participate in CrossFit® Exercise Regimens. Sports 2022, 10, 38. https://doi.org/10.3390/sports10030038
Pearson RC, Jenkins NT. Dietary Intake of Adults Who Participate in CrossFit® Exercise Regimens. Sports. 2022; 10(3):38. https://doi.org/10.3390/sports10030038
Chicago/Turabian StylePearson, Regis C., and Nathan T. Jenkins. 2022. "Dietary Intake of Adults Who Participate in CrossFit® Exercise Regimens" Sports 10, no. 3: 38. https://doi.org/10.3390/sports10030038
APA StylePearson, R. C., & Jenkins, N. T. (2022). Dietary Intake of Adults Who Participate in CrossFit® Exercise Regimens. Sports, 10(3), 38. https://doi.org/10.3390/sports10030038