Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand
Abstract
:1. Introduction
2. Definitions and Constructs of Training Burdens
2.1. Training Burdens
- biomechanical (stresses and strains on the musculoskeletal system [16]).
2.2. Cognitive Demand
3. Towards Multi-Dimensional Training Monitoring
3.1. Current Indicators
3.2. Cognitive Demand Indicators
3.2.1. Self-Report Subjective Measures
3.2.2. Behavioral Measures
3.2.3. Physiological Measures
3.2.4. Neurophysiological Measures
4. Perspectives on Neuroimaging of the Cognitive Demand in Sports
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soligard, T.; Schwellnus, M.; Alonso, J.M.; Bahr, R.; Clarsen, B.; Dijkstra, H.P.; Gabbett, T.; Gleeson, M.; Hägglund, M.; Hutchinson, M.R.; et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 2016, 50, 1030–1141. [Google Scholar] [CrossRef] [Green Version]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Banister, E.; Calvert, T.; Savage, M.; Bach, T. A systems model of training for athletic performance. Aust. J. Sports Med. 1975, 7, 57–61. [Google Scholar]
- Smith, M.R.; Coutts, A.J.; Merlini, M.; Deprez, D.; Lenoir, M.; Marcora, S.M. Mental fatigue impairs soccer-specific physical and technical performance. Med. Sci. Sports Exerc. 2016, 48, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Shenhav, A.; Musslick, S.; Lieder, F.; Kool, W.; Griffiths, T.L.; Cohen, J.D. Toward a rational and mechanistic account of mental effort. Ann. Rev. Neurosci. 2017, 40, 99–124. [Google Scholar] [CrossRef] [Green Version]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. 2), S139–S147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellalieu, S.; Jones, C.; Wagstaff, C.; Kemp, S.; Cross, M.J. Measuring Psychological Load in Sport. Int. J. Sports Med. 2021, 42, 782–788. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Staunton, C.A.; Abt, G.; Weaving, D.; Wundersitz, D.W.T. Misuse of the term ‘load’ in sport and exercise science. J. Sci. Med. Sport, 2021; in press. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. 2), S2161–S2170. [Google Scholar] [CrossRef] [PubMed]
- Day, M.L.; McGuigan, M.R.; Brice, G.; Foster, C. Monitoring exercise intensity during resistance training using the session RPE scale. J. Strength Cond. Res. 2004, 18, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Egan, A.D.; Foster, C. Salivary Cortisol Responses and Perceived Exertion during High Intensity and Low Intensity Bouts of Resistance Exercise. J. Sports Sci. Med. 2004, 3, 8–15. [Google Scholar] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; González-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Verheul, J.; Nedergaard, N.J.; Vanrenterghem, J.; Robinson, M.A. Measuring biomechanical loads in team sports—From lab to field. Sci. Med. Footb. 2020, 4, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.; Caparrós, T.; Capdevila, L. Evaluation of cognitive load in team sports: Literature review. PeerJ 2021, 9, e12045. [Google Scholar] [CrossRef]
- Coyne, J.O.C.; Gregory Haff, G.; Coutts, A.J.; Newton, R.U.; Nimphius, S. The Current State of Subjective Training Load Monitoring-a Practical Perspective and Call to Action. Sports Med. Open 2018, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.M.; Ericsson, K.A. Some considerations when applying the expert performance approach in sport. Hum. Mov. Sci. 2005, 24, 283–307. [Google Scholar] [CrossRef]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chang, C.C.; Liang, Y.M.; Shih, C.M.; Chiu, W.S.; Tseng, P.; Hung, D.L.; Tzeng, O.J.; Muggleton, N.G.; Juan, C.H. Open vs. closed skill sports and the modulation of inhibitory control. PLoS ONE 2013, 8, e55773. [Google Scholar]
- Formenti, D.; Trecroci, A.; Duca, M.; Cavaggioni, L.; D’Angelo, F.; Passi, A.; Longo, S.; Alberti, G. Differences in inhibitory control and motor fitness in children practicing open and closed skill sports. Sci. Rep. 2021, 11, 4033. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Jenkins, D.; Halson, S.; Kelly, V. Changes in subjective mental and physical fatigue during netball games in elite development athletes. J. Sci. Med. Sport 2020, 23, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Jenkins, D.; Smith, M.; Halson, S.; Kelly, V. The application of mental fatigue research to elite team sport performance: New perspectives. J. Sci. Med. Sport 2019, 22, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Jenkins, D.; Rynne, S.; Halson, S.L.; Kelly, V. What is mental fatigue in elite sport? Perceptions from athletes and staff. Eur. J. Sport Sci. 2019, 19, 1367–1376. [Google Scholar] [CrossRef]
- Borg, G. Subjective aspects of physical and mental load. Ergonomics 1978, 21, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.A.; Caird, J.K. Experimental evaluation of a model of mental workload. Hum. Factors 1993, 35, 413–429. [Google Scholar] [CrossRef]
- Sharples, S.; Megaw, T. Definition and measurement of human workload. In Evaluation of Human Work, 4th ed.; Wilson, J.R., Sharples, S., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 515–548. [Google Scholar]
- Wickens, C.D. Multiple resources and mental workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Paas, F.; Renkl, A.; Sweller, J. Cognitive Load Theory and Instructional Design: Recent Developments. Educ. Psychol. 2003, 38, 1–4. [Google Scholar] [CrossRef]
- Hart, S.; Staveland, L. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload; Hancock, P., Meshkati, N., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988; pp. 139–183. [Google Scholar]
- Horat, S.K.; Herrmann, F.R.; Favre, G.; Terzis, J.; Debatisse, D.; Merlo, M.C.G.; Missonnier, P. Assessment of mental workload: A new electrophysiological method based on intra-block averaging of ERP amplitudes. Neuropsychologia 2016, 82, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Baddeley, A.D., Hitch, G., Eds.; Academic Press: London, UK, 1974; pp. 47–89. [Google Scholar]
- Hart, S.G. NASA-Task Load Index (NASA-TLX): 20 Years Later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Orlando, FL, USA, 13–18 May 2006; Volume 50, pp. 904–908. [Google Scholar]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D. Attention and Effort; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Bruya, B.; Tang, Y.Y. Is Attention Really Effort? Revisiting Daniel Kahneman’s Influential 1973 Book Attention and Effort. Front. Psychol. 2018, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Desmond, P.A.; Hancock, P.A. Active and passive fatigue states. In Stress, Workload and Fatigue; Desmond, P.A., Hancock, P.A., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2001; pp. 455–465. [Google Scholar]
- Boksem, M.A.; Tops, M. Mental fatigue: Costs and benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Gevins, A. Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator. In Proceedings of the Biomonitoring for Physiological and Cognitive Performance during Military Operations, Orlando, FL, USA, 23 May 2005; Volume 5797, pp. 116–126. [Google Scholar]
- Lal, S.K.; Craig, A. Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 2002, 39, 313–321. [Google Scholar] [CrossRef]
- Cochran, K.R.; Letvak, S.A.; McCoy, T.P.; Bacon, C.; Karper, W.B. Can Nurses Self-Assess Fatigue? Implications for Nurse Leaders. J. Nurs. Adm. 2021, 51, 507–512. [Google Scholar] [CrossRef]
- Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports 2020, 8, 103. [Google Scholar] [CrossRef]
- Nässi, A.; Ferrauti, A.; Meyer, T.; Pfeiffer, M.; Kellmann, M. Psychological tools used for monitoring training responses of athletes. Perform. Enhanc. Health 2017, 5, 125–133. [Google Scholar] [CrossRef]
- Gamble, P.; Chia, L.; Allen, S. The illogic of being data-driven: Reasserting control and restoring balance in our relationship with data and technology in football. Sci. Med. Footb. 2020, 4, 338–341. [Google Scholar] [CrossRef]
- Vallance, E.; Sutton-Charani, N.; Imoussaten, I.; Montmain, J.; Perrey, S. Combining internal-and external-training-loads to predict non-contact injuries in soccer. Appl. Sci. 2019, 10, 5261. [Google Scholar] [CrossRef]
- Parasuraman, R. Neuroergonomics: Brain, cognition, and performance at work. Curr. Dir. Psychol. Sci. 2011, 20, 181–186. [Google Scholar] [CrossRef]
- Dehais, F.; Karwowski, W.; Ayaz, H. Brain at work and in everyday life as the next frontier: Grand field challenges for neuroergonomics. Front. Neuroergonomics 2020, 1, 583733. [Google Scholar] [CrossRef]
- Reid, G.B.; Nygren, T.E. The Subjective Workload Assessment Technique: A Scaling Procedure for Measuring Mental Workload. Adv. Psychol. 1988, 52, 185–218. [Google Scholar] [CrossRef]
- Diaz-Garcia, J.; Ponce-Bordon, J.C.; González-Ponce, I.; Lopez-Gajardo, M.A.; Tassi, J.M. Validation of a questionnaire to quantify the mental load. In Proceedings of the 25th European Congress of Sport Science, Seville, Spain, 28–30 October 2020. [Google Scholar]
- Camacho, P.; Cruz, D.; Madinabeitia, I.; Giménez, F.; Cárdenas, D. Time constraint increases mental load and influences in the performance in small-sided games in basketball. Res. Q. Exerc. Sport 2020, 92, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Farrow, D.; Pyne, D.P.; Gabbett, T. Skill and Physiological Demands of Open and Closed Training Drills in Australian Football. Int. J. Sports Sci. Coach. 2008, 3, 489–499. [Google Scholar] [CrossRef]
- Barrett, S.; McLaren, S.; Spears, I.; Ward, P.; Weston, M. The Influence of Playing Position and Contextual Factors on Soccer Players’ Match Differential Ratings of Perceived Exertion: A Preliminary Investigation. Sports 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Antonenko, P.V.; Paas, F.; Grabner, R.H.; van Gog, T. Using Electroencephalography to Measure Cognitive Load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Roca, A.; Ford, P.R.; McRobert, A.P.; Williams, A.M. Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. J. Sport Exerc. Psychol. 2013, 35, 144–155. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Kelly, J.N.; Sheppard, J.M. Speed, change of direction speed, and reactive agility of rugby league players. J. Strength Cond. Res. 2008, 22, 174–181. [Google Scholar] [CrossRef]
- Scanlan, A.; Humphries, B.; Tucker, P.S.; Dalbo, V. The influence of physical and cognitive factors on reactive agility performance in men basketball players. J. Sports Sci. 2014, 32, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Gantois, P.; Caputo Ferreira, M.; Lima-Junior, D.; Nakamura, F.; Batista, R.; Fonseca, F.; de Sousa, L. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur. J. Sport Sci. 2019, 20, 534–543. [Google Scholar] [CrossRef]
- Smith, M.R.; Zeuwts, L.; Lenoir, M.; Hens, N.; De Jong, L.M.; Coutts, A.J. Mental fatigue impairs soccer-specific decision-making skill. J. Sports Sci. 2016, 34, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Trecroci, A.; Boccolini, G.; Duca, M.; Formenti, D.; Alberti, G. Mental fatigue impairs physical activity, technical and decision-making performance during small-sided games. PLoS ONE 2020, 15, e0238461. [Google Scholar] [CrossRef] [PubMed]
- Collet, C.; Salvia, E.; Petit-Boulanger, C. Measuring workload with electrodermal activity during common braking actions. Ergonomics 2014, 57, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, A.C.; Sharples, S.; Ritchie, A.C.; Sánchez López, T.; McDowell, M.; Morvan, H.P. Physiological Parameter Response to Variation of Mental Workload. Hum. Factors 2018, 60, 31–56. [Google Scholar] [CrossRef] [Green Version]
- Gendolla, G.H.E.; Wright, R.A. Motivation in social settings: Studies of effort-related cardiovascular arousal. In Social Motivation; Forgas, J.P., Williams, K., von Hippel, W., Eds.; Cambridge University Press: New York, NY, USA, 2005; pp. 71–90. [Google Scholar]
- Mourot, L.; Bouhaddi, M.; Perrey, S.; Rouillon, J.D.; Regnard, J. Quantitative Poincaré plot analysis of heart rate variability: Effect of endurance training. Eur. J. Appl. Physiol. 2004, 91, 79–87. [Google Scholar] [CrossRef]
- Luque-Casado, A.; Perales, J.C.; Cárdenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef]
- Allard, E.S.; Wadlinger, H.A.; Isaacowitz, D.M. Positive gaze preferences in older adults: Assessing the role of cognitive effort with pupil dilation. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2010, 17, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Van der Wel, P.; van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring Mental Workload with EEG+fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- Saikia, M.J.; Besio, W.G.; Mankodiya, K. The Validation of a Portable Functional NIRS System for Assessing Mental Workload. Sensors 2021, 21, 3810. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, H.; Shewokis, P.A.; Bunce, S.; Izzetoglu, K.; Willems, B.; Onaral, B. Optical brain monitoring for operator training and mental workload assessment. Neuroimage 2012, 59, 36–47. [Google Scholar] [CrossRef]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Besson, P. Studying brain activity in sports performance: Contributions and issues. Prog. Brain Res. 2018, 240, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Kohn, A. Gamma rhythms in the brain. PLoS Biol. 2011, 9, e1001045. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Park, J.L.; Fairweather, M.M.; Donaldson, D.I. Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 2015, 52, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Cheron, G.; Petit, G.; Cheron, J.; Leroy, A.; Cebolla, A.; Cevallos, C.; Petieau, M.; Hoellinger, T.; Zarka, D.; Clarinval, A.M.; et al. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance. Front. Psychol. 2016, 7, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrey, S. Non-invasive NIR spectroscopy of human brain function during exercise. Methods 2008, 45, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Carius, D.; Andrä, C.; Clauß, M.; Ragert, P.; Bunk, M.; Mehnert, J. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise-An fNIRS Study in Jugglers. Front. Hum. Neurosci. 2016, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Seidel-Marzi, O.; Hähner, S.; Ragert, P.; Carius, D. Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced Slackliners. Front. Neuroergon. 2021, 2, 644490. [Google Scholar] [CrossRef]
- Kenville, R.; Maudrich, T.; Carius, D.; Ragert, P. Hemodynamic Response Alterations in Sensorimotor Areas as a Function of Barbell Load Levels during Squatting: An fNIRS Study. Front. Hum. Neurosci. 2017, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Carius, D.; Seidel-Marzi, O.; Kaminski, E.; Lisson, N.; Ragert, P. Characterizing hemodynamic response alterations during basketball dribbling. PLoS ONE. 2020, 15, e0238318. [Google Scholar] [CrossRef]
- Carius, D.; Kenville, R.; Maudrich, D.; Riechel, J.; Lenz, H.; Ragert, P. Cortical processing during table tennis - an fNIRS study in experts and novices. Eur. J. Sport Sci. 2021, 17, 1–11. [Google Scholar] [CrossRef]
- Carius, D.; Hörnig, L.; Ragert, P.; Kaminski, E. Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neurosci. Lett. 2020, 715, 134604. [Google Scholar] [CrossRef]
- Piper, S.K.; Krueger, A.; Koch, S.P.; Mehnert, J.; Habermehl, C.; Steinbrink, J.; Obrig, H.; Schmitz, C.H. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 2014, 85, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Mandrick, K.; Derosiere, G.; Dray, G.; Coulon, D.; Micallef, J.P.; Perrey, S. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: A near-infrared spectroscopy study. Neurosci. Res. 2013, 76, 156–162. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gevins, A.; Smith, M.E. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 2000, 10, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habay, J.; Proost, M.; De Wachter, J.; Díaz-García, J.; De Pauw, K.; Meeusen, R.; Van Cutsem, J.; Roelands, B. Mental Fatigue-Associated Decrease in Table Tennis Performance: Is There an Electrophysiological Signature? Int. J. Environ. Res. Public Health 2021, 18, 12906. [Google Scholar] [CrossRef] [PubMed]
- Balkin, T.J.; Horrey, W.J.; Graeber, R.C.; Czeisler, C.A.; Dinges, D.F. The challenges and opportunities of technological approaches to fatigue management. Accid. Anal Prev. 2011, 43, 565–572. [Google Scholar] [CrossRef]
- Wang, Y.K.; Jung, T.P.; Lin, C.T. EEG-Based Attention Tracking During Distracted Driving. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1085–1094. [Google Scholar] [CrossRef]
- Derosière, G.; Dalhoumi, S.; Perrey, S.; Dray, G.; Ward, T. Towards a near infrared spectroscopy-based estimation of operator attentional state. PLoS ONE 2014, 9, e92045. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, C.L.; Penaranda, B.N. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification. Neuroimage 2012, 59, 48–56. [Google Scholar] [CrossRef]
- Kwon, J.; Im, C.-H. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain–Computer Interfaces Based on Convolutional Neural Networks. Front. Hum. Neurosci. 2021, 15, 646915. [Google Scholar] [CrossRef]
- Asgher, U.; Khalil, K.; Khan, M.J.; Ahmad, R.; Butt, S.I.; Ayaz, Y.; Naseer, N.; Nazir, S. Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface. Front. Neurosci. 2020, 14, 584. [Google Scholar] [CrossRef]
- Slutter, M.W.J.; Thammasan, N.; Poel, M. Exploring the Brain Activity Related to Missing Penalty Kicks: An fNIRS Study. Front. Comput. Sci. 2021, 3, 661466. [Google Scholar] [CrossRef]
- Brehm, J.W.; Self, E.A. The intensity of motivation. Annu. Rev. Psychol. 1989, 40, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, M.; di Fronso, S.; Filho, E.; Conforto, S.; Schmid, M.; Bortoli, L.; Comani, S.; Robazza, C. Proficient brain for optimal performance: The MAP model perspective. PeerJ 2016, 4, e2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludyga, S.; Gronwald, T.; Hottenrott, K. The Athlete’s Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise. Neural Plast. 2016, 2016, 4583674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Smith, D.M. Neural Efficiency in Athletes: A Systematic Review. Front. Behav. Neurosci. 2021, 15, 698555. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, C.; Wang, F.; Zhang, D. Inter-brain amplitude correlation differentiates cooperation from competition in a motion-sensing sports game. Soc. Cogn. Affect. Neurosci. 2021, 16, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Burin, D.; Liu, Y.; Yamaya, N.; Kawashima, R. Virtual training leads to physical, cognitive and neural benefits in healthy adults. Neuroimage 2020, 222, 117297. [Google Scholar] [CrossRef] [PubMed]
- Gerry, L.; Ens, B.; Drogemuller, A.; Thomas, B.; Billinghurst, M. Levity: A Virtual Reality System that Responds to Cognitive Load. In Proceedings of the CHI EA’18: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–27 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Kan, B.; Speelman, C.; Nosaka, K. Cognitive demand of eccentric versus concentric cycling and its effects on post-exercise attention and vigilance. Eur. J. Appl. Physiol. 2019, 119, 1599–1610. [Google Scholar] [CrossRef]
- Borot, L.; Pageaux, B.; Laroche, D.; Vergotte, G.; Lepers, R.; Perrey, S. Greater prefrontal and parietal activity during eccentric compared to concentric exercise. Acta Physiol. 2019, 227, e13389. [Google Scholar] [CrossRef] [Green Version]
- Perrey, S. Brain activation associated with eccentric movement: A narrative review of the literature. Eur. J. Sport Sci. 2018, 18, 75–82. [Google Scholar] [CrossRef]
- Blain, B.; Schmit, C.; Aubry, A.; Hausswirth, C.; Le Meur, Y.; Pessiglione, M. Neuro-computational Impact of Physical Training Overload on Economic Decision-Making. Curr. Biol. 2019, 29, 3289–3297.e4. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.J. Fatigue in football: It’s not a brainless task! J. Sports Sci. 2016, 34, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel-Marzi, O.; Ragert, P. Neurodiagnostics in Sports: Investigating the Athlete’s Brain to Augment Performance and Sport-Specific Skills. Front. Hum. Neurosci. 2020, 14, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Zhang, Y.; Huang, R.; Li, L.; Xia, F.; Zou, L.; Yu, Q.; Lin, J.; Herold, F.; Perrey, S.; et al. Structural and functional brain signatures of endurance runners. Brain Struct. Funct. 2021, 226, 93–103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrey, S. Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports 2022, 10, 56. https://doi.org/10.3390/sports10040056
Perrey S. Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports. 2022; 10(4):56. https://doi.org/10.3390/sports10040056
Chicago/Turabian StylePerrey, Stéphane. 2022. "Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand" Sports 10, no. 4: 56. https://doi.org/10.3390/sports10040056
APA StylePerrey, S. (2022). Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports, 10(4), 56. https://doi.org/10.3390/sports10040056