Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Eligibility
2.2. Subject
2.3. Outcome
2.3.1. Characteristics of the Athlete
2.3.2. Anthropometric and Body Composition Parameters
2.3.3. Dietary Intake
2.3.4. Serum Micronutrients Concentration
2.3.5. Cardiovascular Health and Safety Factors
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Athlete
3.2. Anthropometric and Body Composition Parameters
3.3. Dietary Intake
3.4. Serum Micronutrient Status
3.5. Cardiovascular Health
4. Discussion
4.1. Main Findings
4.2. Anthropometric and Body Composition Parameters
4.3. Dietary Intake and Serum Micronutrient Status
4.4. Cardiovascular Health
4.5. Strengths, Limitations, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dopsaj, M.; Zuoziene, I.J.; Milić, R.; Cherepov, E.; Erlikh, V.; Masiulis, N.; Di Nino, A.; Vodičar, J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health 2020, 17, 9464. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920. [Google Scholar] [CrossRef] [Green Version]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Mller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Hoogenboom, B.J.; Morris, J.; Morris, C.; Schaefer, K. Nutritional knowledge and eating behaviors of female, collegiate swimmers. N. Am. J. Sports Phys. Ther. 2009, 4, 139–148. [Google Scholar]
- Domínguez, R.; Sánchez-Oliver, A.J.; Cuenca, E.; Jodra, P.; Fernandes da Silva, S.; Mata-Ordóñez, F. Nutritional needs in the professional practice of swimming: A review. J. Exerc. Nutr. Biochem. 2017, 21, 1–10. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Fidler Mis, N.; Jug, B.; Šajber, D.; Godnov, U.; Čuk, I. Nutritional Status and Cardiovascular Health in Female Adolescent Elite-Level Artistic Gymnasts and Swimmers: A Cross-Sectional Study of 31 Athletes. J. Nutr. Metab. 2021, 2021, 8810548. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [Green Version]
- Meleski, B.W.; Malina, R.M. Changes in body composition and physique of elite university-level female swimmers during a competitive season. J. Sports Sci. 2007, 3, 33–40. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Liao, Y.S.; Li, H.C.; Lu, H.K.; Lai, C.L.; Wang, Y.S.; Hsieh, K.C. Comparison of Bioelectrical Impedance Analysis and Dual Energy X-ray Absorptiometry for Total and Segmental Bone Mineral Content with a Three-Compartment Model. Int. J. Environ. Res. Public Health 2020, 17, 2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzman, B.; Ackerman, K.E. Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sport. Med. 2021, 51, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Malsagova, K.A.; Kopylov, A.T.; Sinitsyna, A.; Stepanov, A.A.; Izotov, A.A.; Butkova, T.V.; Chingin, K.; Klyuchnikov, M.S.; Kaysheva, A.L. Sports Nutrition: Diets, Selection Factors, Recommendations. Nutrients 2021, 13, 3771. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Rushton, B.D. Nutritional knowledge of youth academy athletes. BMC Nutr. 2020, 6, 35. [Google Scholar] [CrossRef]
- Tam, R.; Flood, V.M.; Beck, K.L.; O’Connor, H.T.; Gifford, J.A. Measuring the sports nutrition knowledge of elite Australian athletes using the Platform to Evaluate Athlete Knowledge of Sports Nutrition Questionnaire. Nutr. Diet. 2021, 78, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Sharp, R.L. Physical and energy requirements of competitive swimming events. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.; Boyd, K.T.; Burke, L.M.; Koivisto, A. Nutrition for swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.C.; Ward, K.D.; Mirza, B.; Slawson, D.L.; McClanahan, B.S.; Vukadinovich, C. Comparison of nutritional intake in US adolescent swimmers and non-athletes. Health 2012, 04, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Orchard, J.J.; Orchard, J.W.; Toresdahl, B.; Asif, I.M.; Hughes, D.; La Gerche, A.; Semsarian, C. Cardiovascular Screening of Elite Athletes by Sporting Organizations in Australia: A Survey of Chief Medical Officers. Clin. J. Sport Med. 2021, 31, 401–406. [Google Scholar] [CrossRef]
- Strong, J.P.; Malcom, G.T.; McMahan, C.A.; Tracy, R.E.; Newman, W.P.; Herderick, E.E.; Cornhill, J.F. Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the pathobiological determinants of atherosclerosis in youth study. J. Am. Med. Assoc. 1999, 281, 727–735. [Google Scholar] [CrossRef]
- McGill, H.C.; Herderick, E.E.; McMahan, C.A.; Zieske, A.W.; Malcom, G.T.; Tracy, R.E.; Strong, J.P. Atherosclerosis in youth. Minerva Pediatr. 2002, 54, 437–447. [Google Scholar] [PubMed]
- Skilton, M.R.; Siitonen, N.; Würtz, P.; Viikari, J.S.A.; Juonala, M.; Seppälä, I.; Laitinen, T.; Lehtimäki, T.; Taittonen, L.; Kähönen, M.; et al. High birth weight is associated with obesity and increased carotid wall thickness in young adults: The cardiovascular risk in young finns study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1064–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, M.N. The fittest person in the morgue? Histopathology 2012, 60, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Merghani, A.; Maestrini, V.; Rosmini, S.; Cox, A.T.; Dhutia, H.; Bastiaenan, R.; David, S.; Yeo, T.J.; Narain, R.; Malhotra, A.; et al. Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes with a Low Atherosclerotic Risk Profile. Circulation 2017, 136, 126–137. [Google Scholar] [CrossRef]
- Möhlenkamp, S.; Lehmann, N.; Breuckmann, F.; Bröcker-Preuss, M.; Nassenstein, K.; Halle, M.; Budde, T.; Mann, K.; Barkhausen, J.; Heusch, G.; et al. Running: The risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 2008, 29, 1903–1910. [Google Scholar] [CrossRef] [Green Version]
- De Matos, L.D.N.J.; Caldeira, N.D.A.O.; Perlingeiro, P.D.S.; Dos Santos, I.L.G.; Negrao, C.E.; Azevedo, L.F. Cardiovascular risk and clinical factors in athletes: 10 years of evaluation. Med. Sci. Sports Exerc. 2011, 43, 943–950. [Google Scholar] [CrossRef]
- Jakse, B.; Sekulic, D.; Jakse, B.; Cuk, I.; Sajber, D. Bone health among indoor female athletes and associated factors; a cross-sectional study. Res. Sport. Med. 2019, 28, 314–323. [Google Scholar] [CrossRef]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef]
- Tudor, O.; Bompa, G.H. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Leeds, UK, 2009. [Google Scholar]
- Liposek, S.; Zenic, N.; Saavedra, J.M.; Sekulic, D.; Rodek, J.; Marinsek, M.; Sajber, D. Examination of factors explaining coaching strategy and training methodology as correlates of potential doping behavior in high-level swimming. J. Sport. Sci. Med. 2018, 17, 82–91. [Google Scholar]
- Federation Internationale De Natation (FINA). Fina Athletes. Available online: https://www.fina.org/athletes?gender=&discipline=&nationality=&name= (accessed on 22 January 2022).
- De Keyzer, W.; Dekkers, A.; Van Vlaslaer, V.; Ottevaere, C.; Van Oyen, H.; De Henauw, S.; Huybrechts, I. Relative validity of a short qualitative food frequency questionnaire for use in food consumption. Eur. J. Public Health 2012, 23, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Jakše, B.; Jakše, B.; Godnov, U.; Pinter, S. Nutritional, Cardiovascular Health and Lifestyle Status of ‘Health Conscious’ Adult Vegans and Non-Vegans from Slovenia: A Cross-Sectional Self-Reported Survey. Int. J. Environ. Res. Public Health 2021, 18, 5968. [Google Scholar] [CrossRef] [PubMed]
- Gregorič, M.; Turk, V.F. Slikovno Gradivo s Prikazom Velikosti Porcij. Available online: https://www.nijz.si/sl/publikacije/slikovno-gradivo-s-prikazom-velikosti-porcij (accessed on 28 July 2020).
- OPKP Computer Web-Based Software: The Open Platform for Clinical Nutrition (OPEN). Available online: http://www.opkp.si/sl_SI/fooddiary/diary (accessed on 28 July 2019).
- JSI—Institut “Jozef Stefan”. Available online: https://www.ijs.si/ijsw/JSI (accessed on 11 November 2019).
- EuroFIR AISBL. European Food Information Resource. Available online: http://www.eurofir.org/ (accessed on 28 July 2019).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Public Health. Referenčne Vrednosti za Energijski Vnos ter Vnos Hranil; National Institute of Public Health: Ljubljana, Slovenia, 2020. [Google Scholar]
- DGE/ÖGE/SGE Ergaenzlieferung D-A-CH. Referenzwerte für die Nährstoffzufuhr [Reference Values for Nutrient Intake]; German Nutrition Society: Frankfurt am Main, Germany, 2018; pp. 1–56. [Google Scholar]
- EFSA Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121.
- Wolters, M.; Ströhle, A.; Hahn, A. Cobalamin: A critical vitamin in the elderly. Prev. Med. 2004, 39, 1256–1266. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [Green Version]
- University Medical Centre Ljubljana. Laboratorijski Vodnik; Univerzitetni klinični Center Ljubljana: Ljubljana, Slovenia, 2018. [Google Scholar]
- Visseren, F.L.J.; MacH, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Borch-Johnsen, K. Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. Diabetologia 1999, 42, 647–654. [Google Scholar]
- Desideri, G.; Castaldo, G.; Lombardi, A.; Mussap, M.; Testa, A.; Pontremoli, R.; Punzi, L.; Borghi, C. Is it time to revise the normal range of serum uric acid levels? Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1295–1306. [Google Scholar]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- International Swimming Federation Swimming Points. Available online: https://www.fina.org/swimming/points (accessed on 22 February 2021).
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, CA, May 2012, and 2nd international conference held in Indianapolis, IN, May 2013. Clin. J. Sport Med. 2014, 24, 96–119. [Google Scholar] [CrossRef]
- Beck, B.; Drysdale, L. Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review. Sports 2021, 9, 52. [Google Scholar] [CrossRef]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Agricultural Research Service, US Department of Agriculture: Beltsville, MD, USA, 2003; pp. 18–37. [Google Scholar]
- WHO. Guideline: Sugars Intake for Adults and Children. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 28 July 2019).
- Scientific Advisory Committee on Nutrition. Carbohydrates and Health; The Stationery Office: London, UK, 2015. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Pedlar, C.R.; Newell, J.; Lewis, N.A. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sport. Med. 2019, 49, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Siders, W.A.; Lukaski, H.C.; Bolonchuk, W.W. Relationships Among Swimming Performance, Body Composition and Somatotype in Competitive Collegiate Swimmers. J Sport. Med Phys Fit. 1993, 33, 166–171. [Google Scholar]
- Mizugaki, A.; Kato, H.; Suzuki, H.; Kurihara, H.; Ogita, F. Nutritional Practice and Nitrogen Balance in Elite Japanese Swimmers during a Training Camp. Sports 2021, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; Ormseth, M.; Fuchs, H. Causes and significance of markedly elevated serum ferritin levels in an academic medical center. J. Clin. Rheumatol. 2013, 19, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Silvia, I.; Antonina, C.; Paolina, M.; Santi, C.; Francesco, B. Low fasting serum triglyceride level as a precocious marker of autoimmune disorders. MedGenMed 2003, 5, 1–20. [Google Scholar]
- Bytomski, J.R. Fueling for Performance. Sports Health 2018, 10, 47–53. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Benardot, D.; Nelson, M. Energy and nutrient intakes of the United States national women’s artistic gymnastics team. Int. J. Sport Nutr. Exerc. Metab. 1998, 8, 331–344. [Google Scholar] [CrossRef]
- Foo, W.; Faghy, M.A.; Sparks, A.; Newbury, J.W.; Gough, L.A. The Effects of a Nutrition Education Intervention on Sports Nutrition Knowledge during a Competitive Season in Highly Trained Adolescent Swimmers. Nutrient 2021, 13, 2713. [Google Scholar] [CrossRef]
- Freeman, A.M.; Morris, P.B.; Barnard, N.; Esselstyn, C.B.; Ros, E.; Agatston, A.; Devries, S.; O’Keefe, J.; Miller, M.; Ornish, D.; et al. Trending Cardiovascular Nutrition Controversies. J. Am. Coll. Cardiol. 2017, 69, 1172–1187. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štimec, M.; Kobe, H.; Smole, K.; Kotnik, P.; Širca-Čampa, A.; Zupančič, M.; Battelino, T.; Kržišnik, C.; Fidler Mis, N. Adequate iodine intake of Slovenian adolescents is primarily attributed to excessive salt intake. Nutr. Res. 2009, 29, 888–896. [Google Scholar] [CrossRef]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, H.C.; Rao, S.G.; Vaccarino, V.; Ali, M.K. Effects of different dietary interventions on blood pressure: Systematic review and meta-analysis of randomized controlled trials. Hypertension 2016, 67, 733–739. [Google Scholar] [CrossRef]
- Elliott, P.; Stamler, J.; Dyer, A.R.; Appel, L.; Dennis, B.; Kesteloot, H.; Ueshima, H.; Okayama, A.; Chan, Q.; Garside, D.B.; et al. Association between protein intake and blood pressure: The INTERMAP Study. Arch. Intern. Med. 2006, 166, 79–87. [Google Scholar] [CrossRef]
- Savica, V.; Bellinghieri, G.; Kopple, J.D. The Effect of Nutrition on Blood Pressure. Annu. Rev. Nutr. 2010, 30, 365–401. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, I.M.; George, V.; Sasse, E.A.; Kochar, M.S. A randomized, double-blind, controlled trial of vitamin C in the management of hypertension and lipids. Am. J. Ther. 2002, 9, 289–293. [Google Scholar] [CrossRef]
- Asbaghi, O.; Salehpour, S.; Rezaei Kelishadi, M.; Bagheri, R.; Ashtary-Larky, D.; Nazarian, B.; Mombaini, D.; Ghanavati, M.; Clark, C.C.T.; Wong, A.; et al. Folic acid supplementation and blood pressure: A GRADE-assessed systematic review and dose-response meta-analysis of 41,633 participants. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Buchner, D.M.; Jakicic, J.M.; Powell, K.E.; Kraus, W.E.; Bloodgood, B.; Campbell, W.W.; Dietz, S.; Dipietro, L.; George, S.M.; et al. Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1314–1323. [Google Scholar] [CrossRef]
- Castelletti, S.; Gati, S. The Female Athlete’s Heart: Overview and Management of Cardiovascular Diseases. Eur. Cardiol. 2021, 16, e47. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; García-Ruiz, J.M.; Mendiguren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; et al. Normal LDL-Cholesterol Levels Are Associated With Subclinical Atherosclerosis in the Absence of Risk Factors. J. Am. Coll. Cardiol. 2017, 70, 2979–2991. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Cordain, L.; Harris, W.H.; Moe, R.M.; Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: Lower is better and physiologically normal. J. Am. Coll. Cardiol. 2004, 43, 2142–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of Dietary Assessment in Athletes: A Systematic Review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trindade, C.D.Z.; Montenegro, K.R.; Schneider, C.D.; de Souza Castro, F.A.; Baroni, B.M. Adequacy of dietary intake in swimmers during the general preparation phase. Sport Sci. Health 2017, 13, 373–380. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Periodized Nutrition for Athletes. Sport. Med. 2017, 47, 51–63. [Google Scholar] [CrossRef] [Green Version]
Parameter | Year 2018 | Year 2022 |
---|---|---|
Age (years) | 16.7 | 20.5 |
Completed education status | Elementary school | Elementary school |
Preferred discipline | Freestyle (front crawl) | Freestyle (front crawl) |
Beginning training swimming (age) | 12 | |
Swam 8 or more training units weekly (age) | 13 | |
Swam hours per week (h) | 20 | 25 |
Weekly swam volume (km) | Exceeded 60 km/w | Exceeded 60 km/w |
Competition level (FINA points) † | ||
Long course | 832 | 874 |
Short course | 908 | 921 |
High-profile ranking (place) | ||
Youth EC (400 m, freestyle, 2017) | 3rd | |
Youth EC (short course, 800 m, freestyle, 2017) | 8th | |
Youth WC (400 m, freestyle, 2017) | 11th | |
EC (short course, 200 m, freestyle, 2021) | 3rd | |
EC (short course, 200 m, freestyle, 2021) | 6th | |
WC (short course, 200 m, freestyle, 2021) | 4th | |
OG (short course, 400 m, medley, 2021) | 15th | |
Type of diet | Omnivorous | Omnivorous |
Menstrual characteristics †† | ||
First menstruation (age) | 15 | |
Regular (yes/no) | Yes | Yes |
Painful (yes/no) | No | No |
Perceived intensity of menstruation | Moderate | Moderate |
Training during menstruation (yes/no) | Yes | Yes |
Oral contraceptive use (yes/no) | No | No |
Motivation of swimming ††† | ||
I like swimming | Yes | Yes |
I want to be the best and/or win | Yes | Yes |
Perceived coaching strategy | Technique was an important part of the training | |
Perceived opinion about the content of training | The training was interesting and exciting | |
Perceived high-intensity swimming | When repeated sets of maximal intensity | |
When high focus on stroke technique, speed, and force |
Parameter | Year 2018 | Year 2022 |
---|---|---|
BH (cm) | 181 | 181 |
BM (kg) | 62.2 | 66.3 |
BMI (kg/m2) | 19.0 | 20.2 |
BF (%) | 24.0 | 21.1 |
FM (kg) | 14.9 | 13.9 |
LST (kg) | 45.0 | 49.6 |
BMC total (kg) | 2.32 | 2.65 |
BMD total (g/cm2) | 1.09 | 1.17 |
BMD left femoral neck | 0.92 | 0.84 |
BMD left femur | 0.96 | 0.93 |
BMD left leg | 1.14 | 1.21 |
BMD right leg | 1.13 | 1.16 |
BMD pelvis | 1.10 | 1.06 |
BMD spine lumbar | 0.83 | 1.19 |
BMD spine thoracic | 0.84 | 0.97 |
BMD ribs left | 0.73 | 0.80 |
BMD ribs right | 0.78 | 0.79 |
BMD arm left | 0.82 | 0.87 |
BMD arm right | 0.81 | 0.84 |
BMD head | 2.08 | 2.36 |
Macronutrients (Per Day) | Year 2018 | Year 2022 |
---|---|---|
Energy intake (kcal) | 2433 | 2262 |
Carbohydrates (g) | 376 | 308 |
(% E) | 62 | 54 |
Carbohydrates (g/kg BM) | 6 | 5 |
Total sugarsTS (g) | 206 | 169 |
(% E) | 34 | 30 |
Free sugarsFS (g) | 124 | 129 |
(% E) | 20 | 23 |
Starches (g) | 153 | 94 |
(% E) | 25 | 17 |
Dietary fiber (g) | 26 | 24 |
(% E) | 2 | 2 |
Fat (g) | 57 | 66 |
(% E) | 21 | 26 |
SFA (g) | 22 | 29 |
(% E) | 8 | 11 |
MUFA (g) | 11 | 20 |
(% E) | 4 | 8 |
PUFA (g) | 6 | 14 |
(% E) | 2 | 6 |
EPA + DHA (mg) | 0 | 785 |
Cholesterol (mg) | 189 | 344 |
Protein (g) | 88 | 97 |
(% E) | 14 | 17 |
(g/BM) | 1.3 | 1.6 |
Plant protein (g) | 29 | 40 |
(% E) | 5 | 7 |
Animal protein (g) | 59 | 57 |
(% E) | 10 | 10 |
Alcohol (mg) | 0 | 0 |
Total waterTW (l) | 2.3 | 2.7 |
Micronutrients (Per Day) | Year 2018 | Year 2022 |
---|---|---|
Vitamins | ||
Thiamine (mg) | 1.9 | 1.9 |
Riboflavin (mg) | 3.2 | 1.9 |
Niacin (mg) | 48 | 22 |
Pantothenic acid (mg) | 7.6 | 6.3 |
Vitamin B6 (mg) | 1.4 | 1.9 |
Biotin (µg) | 54 | 35 |
Folate/folic acidFA (µg) | 353 | 1271 |
Vitamin B12 (µg) | 5 | 14 |
Retinol. equ.RE (mg) | 1.1 | 0.8 |
Vitamin C (mg) | 31 | 205 |
Vitamin D (µg) | 10 | 100 |
Vitamin E (mg) | 3.3 | 14.2 |
Vitamin K (µg) | 53 | 34 |
Minerals | ||
Calcium (mg) | 1447 | 1095 |
Magnesium (mg) | 526 | 670 |
Phosphorus (mg) | 1869 | 1703 |
Potassium (mg) | 3035 | 3690 |
Sodium (mg) † | 2834 | 2307 |
Chloride (mg) † | 2658 | 1095 |
Trace elements | ||
Iron (mg) | 12 | 36 |
Iodine (µg) † | 42 | 49 |
Zinc (mg) | 10 | 12 |
Selenium (µg) | 63 | 62 |
Parameter | Reference † | Year 2018 | Year 2022 |
---|---|---|---|
Vitamins | |||
S-vit B12 (pmol/L) | ≥258 | 537 | 351 |
25(OH)D (nmol/L) | ≥75 | 112 | 103 |
Minerals | |||
S-Ca (mmol/L) | 2.10–2.60 | 2.4 | 2.3 |
S-Mg mmol/L) | 0.60–1.10 | 0.9 | 0.8 |
S-P (mmol/L) | 0.84–1.45 | 1.5 | 1.1 |
S-K (mmol/L) | 3.8–5.5 | 4.6 | 4.3 |
Trace element | |||
S-Fe (μmol/L) | 10.7–28.6 | 25 | 37 |
Parameter | Recomm./Refer. † | 2018 | 2022 |
---|---|---|---|
S-cholesterol (mmol/L) | <5.2 | 4.4 | 3.9 |
LDL-cholesterol (mmol/L) | <3.4 | 2.2 | 2.6 |
HDL-cholesterol (mmol/L) | >1.3 | 1.9 | 1.6 |
Triglycerides (mmol/L) | <1.7 | 0.6 | 0.4 |
Blood pressure (mmHg) | |||
Systolic | 120–129 | 128 | 115 |
Diastolic | 80–84 | 62 | 55 |
S-glucose (mmol/L) | <5.8 | 4.6 | 3.9 |
S-UA (μmol/L) | <360 | 377 | 340 |
Hemoglobin (g/L) | ≥120 | 141 | 146 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakše, B.; Lipošek, S.; Zenić, N.; Šajber, D. Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia. Sports 2022, 10, 63. https://doi.org/10.3390/sports10050063
Jakše B, Lipošek S, Zenić N, Šajber D. Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia. Sports. 2022; 10(5):63. https://doi.org/10.3390/sports10050063
Chicago/Turabian StyleJakše, Boštjan, Silvester Lipošek, Nataša Zenić, and Dorica Šajber. 2022. "Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia" Sports 10, no. 5: 63. https://doi.org/10.3390/sports10050063
APA StyleJakše, B., Lipošek, S., Zenić, N., & Šajber, D. (2022). Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia. Sports, 10(5), 63. https://doi.org/10.3390/sports10050063