Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
- The assessment methods cannot compromise the safety of the rider, for example obscuring their view or requiring them to forgo the use of safety equipment such as a helmet.
- Any device used does not compromise the participant’s ability to ride their bicycle as they would normally.
- The technology needs to have sufficient battery capacity to last the duration of each test.
- The equipment needs to be usable in a support vehicle at the end of each of the outdoor tests. EEG, PVT and NASA-TLX cannot easily be measured whilst the participant is cycling, therefore pre and post measurement of mental workload was chosen.
- The delay between the end of the task and data recording should be minimized to reduce the period of recovery to a minimum.
2.3. EEG
2.4. HRV
2.5. Vigilance
2.6. NASA-TLX
2.7. Cycling Conditions
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobson, S.; Irvine, D. Ultra-Distance Cycling: An Expert Guide to Endurance Cycling; Bloomsbury Publishing: London, UK, 2017; ISBN 9781472919892. [Google Scholar]
- Van Mead, N. Rise of the Ultra-Cyclists: A New Breed of Riders Go the Distance. The Guardian. 31 May 2018. Available online: https://www.theguardian.com/environment/bike-blog/2018/may/31/rise-ultra-cyclists-london-wales-london-audax (accessed on 3 November 2021).
- Stuiver, A.; Brookhuis, K.A.; de Waard, D.; Mulder, B. Short-Term Cardiovascular Measures for Driver Support: Increasing Sensitivity for Detecting Changes in Mental Workload. Int. J. Psychophysiol. 2014, 92, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Deluca, J. Fatigue, Cognition and Mental Effort. In Fatigue as a Window to the Brain; MIT Press: Cambridge MA, USA, 2005; pp. 17–52. ISBN 9780262042277. [Google Scholar]
- Boksem, M.A.S.; Tops, M. Mental Fatigue: Costs and Benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puma, S.; Matton, N.; Paubel, P.-V.; Raufaste, É.; El-Yagoubi, R. Using Theta and Alpha Band Power to Assess Cognitive Workload in Multitasking Environments. Int. J. Psychophysiol. 2018, 123, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.K.L.; Craig, A. A Critical Review of the Psychophysiology of Driver Fatigue. Biol. Psychol. 2001, 55, 173–194. [Google Scholar] [CrossRef]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of Science: Mental Workload in Ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Pant, R.; Taukari, A.; Sharma, K. Cognitive Workload of Air Traffic Controllers in Area Control Center of Mumbai Enroute Airspace. J. Psychosoc. Res. 2012, 7, 279–284. [Google Scholar]
- Hockey, R. The Psychology of Fatigue: Work, Effort and Control. In The Psychology of Fatigue: Work, Effort and Control; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Jaquess, K.J.; Gentili, R.J.; Lo, L.-C.; Oh, H.; Zhang, J.; Rietschel, J.C.; Miller, M.W.; Tan, Y.Y.; Hatfield, B.D. Empirical Evidence for the Relationship between Cognitive Workload and Attentional Reserve. Int. J. Psychophysiol. 2017, 121, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Ranchet, M.; Morgan, J.C.; Akinwuntan, A.E.; Devos, H. Cognitive Workload across the Spectrum of Cognitive Impairments: A Systematic Review of Physiological Measures. Neurosci. Biobehav. Rev. 2017, 80, 516–537. [Google Scholar] [CrossRef] [Green Version]
- Zering, J.C.; Brown, D.M.Y.; Graham, J.D.; Bray, S.R. Cognitive Control Exertion Leads to Reductions in Peak Power Output and as Well as Increased Perceived Exertion on a Graded Exercise Test to Exhaustion. J. Sports Sci. 2017, 35, 1799–1807. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-Based Training Load in Soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef]
- Boksem, M.A.S.; Meijman, T.F.; Lorist, M.M. Mental Fatigue, Motivation and Action Monitoring. Biol. Psychol. 2006, 72, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Marquart, G.; Cabrall, C.; de Winter, J. Review of Eye-Related Measures of Drivers’ Mental Workload. Procedia Manuf. 2015, 3, 2854–2861. [Google Scholar] [CrossRef] [Green Version]
- Pires, F.O.; Silva-Júnior, F.L.; Brietzke, C.; Franco-Alvarenga, P.E.; Pinheiro, F.A.; de França, N.M.; Teixeira, S.; Meireles Santos, T. Mental Fatigue Alters Cortical Activation and Psychological Responses, Impairing Performance in a Distance-Based Cycling Trial. Front. Physiol. 2018, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco-Alvarenga, P.E.; Brietzke, C.; Canestri, R.; Goethel, M.F.; Hettinga, F.; Santos, T.M.; Pires, F.O. Caffeine Improved Cycling Trial Performance in Mentally Fatigued Cyclists, Regardless of Alterations in Prefrontal Cortex Activation. Physiol. Behav. 2019, 204, 41–48. [Google Scholar] [CrossRef]
- Möckel, T.; Beste, C.; Wascher, E. The Effects of Time on Task in Response Selection An ERP Study of Mental Fatigue. Sci. Rep. 2015, 5, 10113. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Chai, R.; Nguyen, H.T.; Marcora, S.M.; Coutts, A.J. Comparing the Effects of Three Cognitive Tasks on Indicators of Mental Fatigue. J. Psychol. 2019, 153, 759–783. [Google Scholar] [CrossRef]
- Holgado, D.; Zabala, M.; Sanabria, D. No Evidence of the Effect of Cognitive Load on Self-Paced Cycling Performance. PLoS ONE 2019, 14, e0217825. [Google Scholar] [CrossRef]
- Paulus, M.P.; Potterat, E.G.; Taylor, M.K.; Van, K.F.; Bauman, J.; Momen, N.; Padilla, G.A.; Swain, J.L. A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments. Neurosci. Biobehav. Rev. 2010, 33, 1080–1088. [Google Scholar] [CrossRef] [Green Version]
- White, C. 2022 Calendar of Bikepacking Races. Available online: https://ridefar.info/races/list/ (accessed on 3 November 2021).
- Abd Rahman, N.I.; Md Dawal, S.Z.; Yusoff, N. Driving Mental Workload and Performance of Ageing Drivers. Transp. Res. Part F Traffic Psychol. Behav. 2020, 69, 265–285. [Google Scholar] [CrossRef]
- Lal, S.K.L.; Craig, A. Driver Fatigue: Electroencephalography and Psychological Assessment. Psychophysiology 2002, 39, 313–321. [Google Scholar] [CrossRef]
- Vrijens, D.; Drossaerts, J.; van Koeveringe, G.; Van Kerrebroeck, P.; van Os, J.; Leue, C. Affective Symptoms and the Overactive Bladder a Systematic Review. J. Psychosom. Res. 2015, 78, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Priego Quesada, J.I.; Kerr, Z.Y.; Bertucci, W.M.; Carpes, F.P. The Categorization of Amateur Cyclists as Research Participants: Findings from an Observational Study. J. Sports Sci. 2018, 36, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.; Cohggan, A.R.; McGregor, S. Training and Racing with a Power Meter, 3rd ed.; Velopress: Boulder, CO, USA, 2019; ISBN 9781937715939. [Google Scholar]
- Inglis, E.C.; Iannetta, D.; Passfield, L.; Murias, J.M. Maximal Lactate Steady State Versus the 20-Minute Functional Threshold Power Test in Well-Trained Individuals: “Watts” the Big Deal? Int. J. Sports Physiol. Perform. 2020, 15, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-F.; Chen, P.-T.; Huang, H.-I. Attributes of Destination Attractiveness in Taiwanese Bicycle Tourism: The Perspective of Active Experienced Bicycle Tourists. Int. J. Hosp. Tour. Adm. 2014, 15, 275–297. [Google Scholar] [CrossRef]
- Waters, J. Snowball Sampling: A Cautionary Tale Involving a Study of Older Drug Users. Int. J. Soc. Res. Methodol. 2015, 18, 367–380. [Google Scholar] [CrossRef]
- Griffith, D.A.; Scott Morris, E.; Thakar, V. Spatial Autocorrelation and Qualitative Sampling: The Case of Snowball Type Sampling Designs. Ann. Am. Assoc. Geogr. 2016, 106, 773–787. [Google Scholar] [CrossRef]
- Cramer, H.; Haller, H.; Dobos, G.; Lauche, R. A Systematic Review and Meta-Analysis Estimating the Expected Dropout Rates in Randomized Controlled Trials on Yoga Interventions. Evid. Based. Complement. Alternat. Med. 2016, 2016, 5859729. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The Bioenergetics of World Class Cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Hernando, D.; Garatachea, N.; Almeida, R.; Casajús, J.A.; Bailón, R. Validation of Heart Rate Monitor Polar RS800 for Heart Rate Variability Analysis During Exercise. J. Strength Cond. Res. 2018, 32, 716–725. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Cinaz, B.; Arnrich, B.; La Marca, R.; Tröster, G. Monitoring of Mental Workload Levels during an Everyday Life Office-Work Scenario. Pers. Ubiquit. Comput. 2013, 17, 229–239. [Google Scholar] [CrossRef]
- Foy, H.J.; Chapman, P. Mental Workload Is Reflected in Driver Behaviour, Physiology, Eye Movements and Prefrontal Cortex Activation. Appl. Ergon. 2018, 73, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Holgado, D.; Troya, E.; Perales, J.C.; Vadillo, M.A.; Sanabria, D. Does Mental Fatigue Impair Physical Performance? A Replication Study. EJSS 2021, 21, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, J.; Zhang, P.; Zhang, W. Detection of Mental Fatigue State with Wearable ECG Devices. Int. J. Med. Inform. 2018, 119, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Käthner, I.; Wriessnegger, S.C.; Müller-Putz, G.R.; Kübler, A.; Halder, S. Effects of Mental Workload and Fatigue on the P300, Alpha and Theta Band Power during Operation of an ERP (P300) Brain-Computer Interface. Biol. Psychol. 2014, 102, 118–129. [Google Scholar] [CrossRef]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; de Vos, M. How about Taking a Low-Cost, Small, and Wireless EEG for a Walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef]
- Li, W.; He, Q.-C.; Fan, X.-M.; Fei, Z.-M. Evaluation of Driver Fatigue on Two Channels of EEG Data. Neurosci. Lett. 2012, 506, 235–239. [Google Scholar] [CrossRef]
- Krigolson, O.E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. Front. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- LaRocco, J.; Le, M.D.; Paeng, D.-G. A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 2020, 14, 553352. [Google Scholar] [CrossRef]
- Galy, E.; Cariou, M.; Mélan, C. What Is the Relationship between Mental Workload Factors and Cognitive Load Types? Int. J. Psychophysiol. 2012, 83, 269–275. [Google Scholar] [CrossRef]
- Pendleton, D.M.; Sakalik, M.L.; Moore, M.L.; Tomporowski, P.D. Mental Engagement during Cognitive and Psychomotor Tasks: Effects of Task Type, Processing Demands, and Practice. Int. J. Psychophysiol. 2016, 109, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Perlman, D.; Samost, A.; Domel, A.G.; Mehler, B.; Dobres, J.; Reimer, B. The Relative Impact of Smartwatch and Smartphone Use While Driving on Workload, Attention, and Driving Performance. Appl. Ergon. 2019, 75, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the Heart-Brain Connection: Further Elaboration of a Model of Neurovisceral Integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Grässler, B.; Hökelmann, A.; Cabral, R.H. Resting Heart Rate Variability as a Possible Marker of Cognitive Decline. Kinesiology 2020, 52, 72–84. [Google Scholar] [CrossRef]
- Danieli, A.; Lusa, L.; Potočnik, N.; Meglič, B.; Grad, A.; Bajrović, F.F. Resting Heart Rate Variability and Heart Rate Recovery after Submaximal Exercise. Clin. Auton. Res. 2014, 24, 53–61. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Rusko, H.; Martinmäki, K. Post-Exercise Heart Rate Variability of Endurance Athletes after Different High-Intensity Exercise Interventions. Scand. J. Med. Sci. Sports 2008, 18, 511–519. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Hynynen, E.; Mann, T.; Rusko, H.; Nummela, A. Can HRV Be Used to Evaluate Training Load in Constant Load Exercises? Eur. J. Appl. Physiol. 2010, 108, 435–442. [Google Scholar] [CrossRef]
- Vallverdú, M.; Ruiz-Muñoz, A.; Roca, E.; Caminal, P.; Rodríguez, F.A.; Irurtia, A.; Perera, A. Assessment of Heart Rate Variability during an Endurance Mountain Trail Race by Multi-Scale Entropy Analysis. Entropy 2017, 19, 658. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, N.; Neyt, X.; Henderickx, D.; Soetens, E. Psychophysiological Investigation of Vigilance Decrement: Boredom or Cognitive Fatigue? Physiol. Behav. 2008, 93, 369–378. [Google Scholar] [CrossRef]
- Evirgen, N.; Oniz, A.; Ozgoren, M. The Development of A Psychomotor Vigilance Test Battery and the Assessment of Vigilance Change in Reaction to Mental Work Load. J. Neurol. Sci. 2015, 32, 494–506. [Google Scholar]
- Lim, J.; Wu, W.-C.; Wang, J.; Detre, J.A.; Dinges, D.F.; Rao, H. Imaging Brain Fatigue from Sustained Mental Workload: An ASL Perfusion Study of the Time-on-Task Effect. Neuroimage 2010, 49, 3426–3435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, E.; Sanabria, D.; Jung, T.-P.; Correa, Á. Electroencephalographic and Peripheral Temperature Dynamics during a Prolonged Psychomotor Vigilance Task. Accid. Anal. Prev. 2019, 126, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Arsintescu, L.; Kato, K.H.; Cravalho, P.F.; Feick, N.H.; Stone, L.S.; Flynn-Evans, E.E. Validation of a Touchscreen Psychomotor Vigilance Task. Accid. Anal. Prev. 2019, 126, 173–176. [Google Scholar] [CrossRef]
- Knufinke, M.; Nieuwenhuys, A.; Maase, K.; Moen, M.H.; Geurts, S.A.E.; Coenen, A.M.L.; Kompier, M.A.J. Effects of Natural Between-Days Variation in Sleep on Elite Athletes’ Psychomotor Vigilance and Sport-Specific Measures of Performance. J. Sports Sci. Med. 2018, 17, 515–524. [Google Scholar]
- Graw, P.; Kräuchi, K.; Knoblauch, V.; Wirz-Justice, A.; Cajochen, C. Circadian and Wake-Dependent Modulation of Fastest and Slowest Reaction Times during the Psychomotor Vigilance Task. Physiol. Behav. 2004, 80, 695–701. [Google Scholar] [CrossRef]
- Drummond, S.P.A.; Bischoff-Grethe, A.; Dinges, D.F.; Ayalon, L.; Mednick, S.C.; Meloy, M.J. The Neural Basis of the Psychomotor Vigilance Task. Sleep 2005, 28, 1059–1068. [Google Scholar] [CrossRef]
- Jones, M.J.; Dunican, I.C.; Murray, K.; Peeling, P.; Dawson, B.; Halson, S.; Miller, J.; Eastwood, P.R. The Psychomotor Vigilance Test: A Comparison of Different Test Durations in Elite Athletes. J. Sports Sci. 2018, 36, 2033–2037. [Google Scholar] [CrossRef]
- Arsintescu, L.; Mulligan, J.B.; Flynn-Evans, E.E. Evaluation of a Psychomotor Vigilance Task for Touch Screen Devices. Hum. Factors 2017, 59, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Muth, E.R.; Moss, J.D.; Rosopa, P.J.; Salley, J.N.; Walker, A.D. Respiratory Sinus Arrhythmia as a Measure of Cognitive Workload. Int. J. Psychophysiol. 2012, 83, 96–101. [Google Scholar] [CrossRef]
- Finomore, V.S., Jr.; Shaw, T.H.; Warm, J.S.; Matthews, G.; Boles, D.B. Viewing the Workload of Vigilance through the Lenses of the NASA-TLX and the MRQ. Hum. Factors 2013, 55, 1044–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitzler, C.; Seifart, L.; Chollet, D. Assessing Mental Workload at Maximal Intensity in Swimming Using the NASA-TLX Questionnaire. Conf. Proc. Biomech. Med. Swim. 2010, 11, 286–288. [Google Scholar]
- Zheng, B.; Jiang, X.; Tien, G.; Meneghetti, A.; Panton, O.N.M.; Atkins, M.S. Workload Assessment of Surgeons: Correlation between NASA TLX and Blinks. Surg. Endosc. 2012, 26, 2746–2750. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Chintamani, K.K.; Pandya, A.K.; Ellis, R.D. NASA TLX: Software for Assessing Subjective Mental Workload. Behav. Res. Methods 2009, 41, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Lillo-Bevia, J.R. Validity and Reliability of the PowerTap P1 Pedals Power Meter. J. Sports Sci. Med. 2018, 17, 305–311. [Google Scholar]
- Whittle, C.; Smith, N.; Jobson, S.A. Validity of PowerTap P1 Pedals during Laboratory-Based Cycling Time Trial Performance. Sports 2018, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Rodrigues, P.; Wassmansdorf, R.; Salgueirosa, F.M.; Hernandez, S.G.; Nascimento, V.B.; Daros, L.B.; Wharton, L.; Osiecki, R. Time-Course of Changes in Indirect Markers of Muscle Damage Responses Following a 130-Km Cycling Race. Braz. J. Kinanthropometry Hum. Perform. 2016, 18, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Olafsdottir, G.; Cloke, P.; Schulz, A.; van Dyck, Z.; Eysteinsson, T.; Thorleifsdottir, B.; Vögele, C. Health Benefits of Walking in Nature: A Randomized Controlled Study Under Conditions of Real-Life Stress. Environ. Behav. 2020, 52, 248–274. [Google Scholar] [CrossRef]
- Van der Jagt, A.P.N.; Craig, T.; Brewer, M.J.; Pearson, D.G. A View Not to Be Missed: Salient Scene Content Interferes with Cognitive Restoration. PLoS ONE 2017, 12, e0169997. [Google Scholar] [CrossRef] [Green Version]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting With Nature. Cimprich 2003, 1992, 1993. [Google Scholar] [CrossRef] [PubMed]
- Berto, R. The Role of Nature in Coping with Psycho-Physiological Stress: A Literature Review on Restorativeness. Behav. Sci. 2014, 4, 394–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, D.; Carr, S.; Orme, D. The Effect of Motivational Music on Sub-Maximal Exercise. null 2005, 5, 97–106. [Google Scholar] [CrossRef]
- Jia, T.; Ogawa, Y.; Miura, M.; Ito, O.; Kohzuki, M. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise. PLoS ONE 2016, 11, e0148648. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Meehan, Z.M. A Practical Guide to Resonance Frequency Assessment for Heart Rate Variability Biofeedback. Front. Neurosci. 2020, 14, 570400. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irvine, D.; Jobson, S.A.; Wilson, J.P. Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling. Sports 2022, 10, 67. https://doi.org/10.3390/sports10050067
Irvine D, Jobson SA, Wilson JP. Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling. Sports. 2022; 10(5):67. https://doi.org/10.3390/sports10050067
Chicago/Turabian StyleIrvine, Dominic, Simon A. Jobson, and John P. Wilson. 2022. "Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling" Sports 10, no. 5: 67. https://doi.org/10.3390/sports10050067
APA StyleIrvine, D., Jobson, S. A., & Wilson, J. P. (2022). Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling. Sports, 10(5), 67. https://doi.org/10.3390/sports10050067