Neuromuscular Response during Different Side-Cutting Maneuvers and Its Influence on the Risk of Knee Injuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Procedures
2.4. Isometric Testing
2.5. Electromyography
2.6. Statistical Analysis
3. Results
3.1. EMG in SC30
3.2. EMG in SC45
3.3. EMG in SC45cl
4. Discussion
5. Limitations and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beaulieu, M.L.; Lamontagne, M.; Xu, L. Lower limb muscle activity and kinematics of an unanticipated cutting manoeuvre: A gender comparison. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Chia, L.M.; Myer, G.D.; Hewett, T.E.; McKay, M.J.; Sullivan, J.; Ford, K.R.; Pappas, E. Do Cutting Kinematics Change as Boys Mature? A Longitudinal Cohort Study of High-School Athletes. Clin. J. Sport Med. 2023, 33, e8–e13. [Google Scholar] [CrossRef] [PubMed]
- Kittl, C.; El-Daou, H.; Athwal, K.K.; Gupte, C.M.; Weiler, A.; Williams, A.; Amis, A.A. The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. Am. J. Sports Med. 2016, 44, 345–354. [Google Scholar] [CrossRef]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. The Effectiveness of Injury Prevention Programs to Modify Risk Factors for Non-Contact Anterior Cruciate Ligament and Hamstring Injuries in Uninjured Team Sports Athletes: A Systematic Review. PLoS ONE 2016, 11, e0155272. [Google Scholar] [CrossRef]
- Dai, B.; Garrett, W.E.; Gross, M.T.; Padua, D.A.; Queen, R.M.; Yu, B. The effect of performance demands on lower extremity biomechanics during landing and cutting tasks. J. Sport Health Sci. 2019, 8, 228–234. [Google Scholar] [CrossRef]
- Nedergaard, N.J.; Dalbø, S.; Petersen, S.V.; Zebis, M.K.; Bencke, J. Biomechanical and neuromuscular comparison of single- and multi-planar jump tests and a side-cutting maneuver: Implications for ACL injury risk assessment. Knee 2020, 27, 324–333. [Google Scholar] [CrossRef]
- Smeets, A.; Malfait, B.; Dingenen, B.; Robinson, M.A.; Vanrenterghem, J.; Peers, K.; Nijs, S.; Vereecken, S.; Staes, F.; Verschueren, S. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study. Knee 2019, 26, 40–51. [Google Scholar] [CrossRef]
- Maniar, N.; Schache, A.G.; Cole, M.H.; Opar, D.A. Lower-limb muscle function during sidestep cutting. J. Biomech. 2019, 82, 186–192. [Google Scholar] [CrossRef]
- Maniar, N.; Schache, A.G.; Pizzolato, C.; Opar, D.A. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing. Scand. J. Med. Sci. Sports 2020, 30, 1664–1674. [Google Scholar] [CrossRef]
- Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A.P.M. Which Screening Tools Can Predict Injury to the Lower Extremities in Team Sports? A Systematic Review. Sports Med. 2012, 42, 791–815. [Google Scholar] [CrossRef]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle Activation during ACL Injury Risk Movements in Young Female Athletes: A Narrative Review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Training Interventions on Change of Direction Biomechanics Associated with Increased Anterior Cruciate Ligament Loading: A Scoping Review. Sports Med. 2019, 49, 1837–1859. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Alvares, J.B.; Marques, V.B.; Vaz, M.A.; Baroni, B.M. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults. J. Strength Cond. Res. 2018, 32, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, M.; Kofler, B.; Faist, M.; Hodapp, M.; Gollhofer, A. Effect of a Whole-Body Vibration Session on Knee Stability. Int. J. Sports Med. 2008, 29, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Nightingale, E.J.; Simic, M.; Ford, K.R.; Hewett, T.E.; Myer, G.D. Do Exercises Used in Injury Prevention Programmes Modify Cutting Task Biomechanics? A Systematic Review with Meta-analysis. Br. J. Sports Med. 2015, 49, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Blasimann, A.; Koenig, I.; Baert, I.; Baur, H.; Vissers, D. Which Assessments Are Used to Analyze Neuromuscular Control by Electromyography after an Anterior Cruciate Ligament Injury to Determine Readiness to Return to Sports? A Systematic Review. BMC Sports Sci. Med. Rehabil. 2021, 13, 142. [Google Scholar] [CrossRef]
- Burland, J.P.; Lepley, A.S.; Frechette, L.; Lepley, L.K. Protracted Alterations in Muscle Activation Strategies and Knee Mechanics in Patients after Anterior Cruciate Ligament Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3766–3772. [Google Scholar] [CrossRef]
- Kamper, S.J. Randomization: Linking Evidence to Practice. J. Orthop. Sports Phys. Ther. 2018, 48, 730–731. [Google Scholar] [CrossRef]
- Bussey, M.D.; Aldabe, D.; Adhia, D.; Mani, R. Reliability of Surface Electromyography Activity of Gluteal and Hamstring Muscles during Sub-maximal and Maximal Voluntary Isometric Contractions. Musculoskelet. Sci. Pract. 2018, 34, 103–107. [Google Scholar] [CrossRef]
- Stastny, P.; Lehnert, M.; Zaatar, A.; Svoboda, Z.; Xaverova, Z.; Jelen, K. Knee Joint Muscles Neuromuscular Activity During Load-Carrying Walking. Neuro Endocrinol. Lett. 2014, 35, 633–639. [Google Scholar]
- Askling, C. Type of Acute Hamstring Strain Affects Flexibility, Strength, and Time to Return to Pre-Injury Level. Br. J. Sports Med. 2006, 40, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Senorski, E.H. The Mechanism of Hamstring Injuries—A Systematic Review. BMC Musculoskelet. Disord. 2020, 21, 641. [Google Scholar] [CrossRef] [PubMed]
- Hannah, R.; Minshull, C.; Smith, S.L.; Folland, J.P. Longer Electromechanical Delay Impairs Hamstrings Explosive Force versus Quadriceps. Med. Sci. Sports Exerc. 2014, 46, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Shanbehzadeh, S.; Mohseni Bandpei, M.A.; Ehsani, F. Knee Muscle Activity during Gait in Patients with Anterior Cruciate Ligament Injury: A Systematic Review of Electromyographic Studies. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1432–1442. [Google Scholar] [CrossRef]
- Kellis, E.; Sahinis, C.; Baltzopoulos, V. Is Hamstrings-to-Quadriceps Torque Ratio Useful for Predicting Anterior Cruciate Ligament and Hamstring Injuries? A Systematic and Critical Review. J. Sport Health Sci. 2022, 12, 343–358. [Google Scholar] [CrossRef]
- Lee, J.W.Y.; Mok, K.M.; Chan, H.C.K.; Yung, P.S.H.; Chan, K.M. Eccentric Hamstring Strength Deficit and Poor Hamstring-to-Quadriceps Ratio Are Risk Factors for Hamstring Strain Injury in Football: A Prospective Study of 146 Professional Players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Zebis, M.K.C.; Bencke, J.; Andersen, L.L.C.; Døssing, S.; Alkjær, T.; Magnusson, S.P.D.; Kjær, M.M.; Aagaard, P. The Effects of Neuromuscular Training on Knee Joint Motor Control During Sidecutting in Female Elite Soccer and Handball Players. Clin. J. Sport Med. 2008, 18, 329–337. [Google Scholar] [CrossRef]
- Zebis, M.K.; Bencke, J.; Andersen, L.L.; Alkjaer, T.; Suetta, C.; Mortensen, P.; Kjaer, M.; Aagaard, P. Acute Fatigue Impairs Neuromuscular Activity of Anterior Cruciate Ligament-Agonist Muscles in Female Team Handball Players: EMG Activity after Handball Match Play. Scand. J. Med. Sci. Sports 2011, 21, 833–840. [Google Scholar] [CrossRef]
- Krosshaug, T.; Nakamae, A.; Boden, B.; Engebretsen, L.; Smith, G.; Slauterbeck, J.; Hewett, T.E.; Bahr, R. Estimating 3D Joint Kinematics from Video Sequences of Running and Cutting Maneuvers—Assessing the Accuracy of Simple Visual Inspection. Gait Posture 2007, 26, 378–385. [Google Scholar] [CrossRef]
- Dedinsky, R.; Baker, L.; Imbus, S.; Bowman, M.; Murray, L. Exercises That Facilitate Optimal Hamstring and Quadriceps Co-Activation to Help Decrease ACL Injury Risk in Healthy Females: A Systematic Review of the Literature. Int. J. Sports Phys. Ther. 2017, 12, 3–15. [Google Scholar] [PubMed]
- Sigward, S.M.; Powers, C.M. Loading Characteristics of Females Exhibiting Excessive Valgus Moments during Cutting. Clin. Biomech. 2007, 22, 827–833. [Google Scholar] [CrossRef]
- Dorgo, S.; Edupuganti, P.; Smith, D.R.; Ortiz, M. Comparison of Lower Body Specific Resistance Training on the Hamstring to Quadriceps Strength Ratios in Men and Women. Res. Q. Exerc. Sport 2012, 83, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, O.; Chakravarty, K.; Chatterjee, D.; Sinha, A.; Poduval, M. Musculoskeletal Modeling to Predict and Reduce Antetrior Cruciate Ligament Injury during Single Leg Drop Jump Activity: Synergistic Muscle Co-Activation Approach. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4108–4112. [Google Scholar] [CrossRef]
- Ruas, C.; Brown, L.; Lima, C.; Gregory Haff, G.; Pinto, R. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations. Int. J. Sports Med. 2018, 39, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.C.; Da Silva, W.L.; Camarda, S.R.A.; Denadai, B.S. Fatigue and Rapid Hamstring/Quadriceps Force Capacity in Professional Soccer Players. Clin. Physiol. Funct. Imaging 2013, 33, 18–23. [Google Scholar] [CrossRef]
- Wilderman, D.R.; Ross, S.E.; Padua, D.A. Thigh Muscle Activity, Knee Motion, and Impact Force During Side-Step Pivoting in Agility-Trained Female Basketball Players. J. Athl. Train. 2009, 44, 14–25. [Google Scholar] [CrossRef]
- Kilgallon, M.; Donnelly, A.E.; Shafat, A. Progressive Resistance Training Temporarily Alters Hamstring Torque–Angle Relationship. Scand. J. Med. Sci. Sports 2007, 17, 18–24. [Google Scholar] [CrossRef]
- Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring Injury Occurrence in Elite Soccer Players after Preseason Strength Training with Eccentric Overload: Hamstring Training in Soccer Players. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef]
- Vanmeerhaeghe, A.F.; Tutusaus, L.C.; De Antolín Ruiz, P.; Massó, I.; Ortigosa, N. Efectos de un entrenamiento propioceptivo sobre la extremidad inferior en jóvenes deportistas jugadores de voleibol. Apunt. Med. L’esport 2008, 43, 5–13. [Google Scholar] [CrossRef]
- Sanudo, B.; Feria, A.; Carrasco, L.; De Hoyo, M.; Santos, R.; Gamboa, H. Gender Differences in Knee Stability in Response to Whole-Body Vibration. J. Strength Cond. Res. 2012, 26, 2156–2165. [Google Scholar] [CrossRef]
- Begalle, R.L.; DiStefano, L.J.; Blackburn, T.; Padua, D.A. Quadriceps and Hamstrings Coactivation During Common Therapeutic Exercises. J. Athl. Train. 2012, 47, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W. Effectiveness of a Neuromuscular and Proprioceptive Training Program in Preventing Anterior Cruciate Ligament Injuries in Female Athletes: 2-Year Follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean | Men (n = 44) | Women (n = 13) | p | EG (n = 29) | CG (n = 28) | p |
---|---|---|---|---|---|---|---|
Age (years) | 23.01 (±2.99) | 23.43 (±3) | 21.61 (±2) | 0.358 | 22.3 (2.62) | 23.8 (3.20) | 0.056 |
Body mass (Kg) | 73.01 (±12.76) | 77.74 (±9.89) | 57.01 (±7.05) | 0.357 | 72.2 (11.1) | 73.8 (14.5) | 0.638 |
Height (m) | 1.74 (±0.08) | ±1.78 (±0.05) | 1.63 (±0.06) | 0.600 | 1.74 (0.08) | 1.76 (0.08) | 0.266 |
BMI (kg/m2) | 23.74 (±2.71) | 24.46 (±2.49) | 21.28 (±1.90) | 0.383 | 23.9 (2.51) | 23.6 (2.95) | 0.708 |
PA (hours/week) | 8.78 (±4.30) | 9.30 (±4.49) | 7.00 (±3.13) | 0.251 | 8.33 (4.28) | 9.25 (4.37) | 0.424 |
PAday (hours/day) | 2.32 (±2.76) | 2.25 (±2.43) | 2.57 (±4.78) | 0.303 | 2.40 (2.95) | 2.25 (2.61) | 0.843 |
Variables | Pre | Post | Differences | ||||
---|---|---|---|---|---|---|---|
EG | CG | EG | CG | p Value a | d-Cohen | Change | |
RMSQ_MVC | 0.6426 (0.04) | 0.6511 (0.08) | 0.5723 (0.07) | 0.6351 (0.09) | 0.016 | −9.2 (−20.1; 3.2) | 5/13/82% |
RMSH_MVC | 0.5613 (0.04) | 0.5740 (0.05) | 0.5571 (0.15) | 0.5823 (0.08) | 0.197 | −5.2 (−13.8; 4.2) | 5/23/72% |
RMSQ_50 | 0.6526 (0.03) | 0.6565 (0.17) | 0.5541 (0.13) | 0.6486 (0.08) | 0.121 | −10.9 (−21.4; 1.0) | 3/9/88% |
RMSH_50 | 0.5435 (0.03) | 0.5059 (0.11) | 0.5282 (0.17) | 0.5632 (0.03) | 0.785 | −9.5 (−16.7; −1.6) | 1/3/95% |
RMSQ_100 | 0.6534 (0.03) | 0.6574 (0.16) | 0.5670 (0.13) | 0.6417 (0.09) | 0.251 | −7.7 (−15.6; 1.0) | 4/10/87% |
RMSH_100 | 0.5502 (0.04) | 0.5320 (0.11) | 0.5432 (0.18) | 0.5582 (0.04) | 0.973 | −0.2 (−9.7; 10.2) | 38/20/41% |
RMSQ_150 | 0.6434 (0.05) | 0.6723 (0.17) | 0.5365 (0.13) | 0.6440 (0.08) | 0.038 | −7.2 (−17.9; 4.8) | 4/19/75% |
RMSH_150 | 0.5478 (0.03) | 0.5208 (0.11) | 0.5337 (0.18) | 0.5618 (0.04) | 0.463 | −10.9 (−18.7; −2.4) | 1/3/96% |
RMSQ_200 | 0.6455 (0.04) | 0.6907 (0.16) | 0.5398 (0.13) | 0.6487 (0.08) | 0.012 | −6.2 (−15.3; 3.8) | 5/19/76% |
RMSH_200 | 0.5431 (0.03) | 0.5281 (0.12) | 0.5475 (0.15) | 0.5538 (0.03) | 0.949 | 4.9 (−4.3; 14.9) | 70/19/11% |
RatioH/Q_MVC | 0.8770 (0.09) | 0.8642 (0.06) | 0.9851 (0.28) | 0.9330 (0.17) | 0.861 | −0.5 (−12.6; 13.3) | 38/19/43% |
RatioH/Q_50 | 0.8253 (0.05) | 0.7701 (0.09) | 1.0031 (0.28) | 0.8440 (0.39) | 0.043 | 5.3 (−10.8; 24.3) | 61/17/22% |
RatioH/Q_100 | 0.8446 (0.08) | 0.8232 (0.12) | 0.9714 (0.31) | 0.7800 (0.35) | 0.013 | 14.1 (−1.2; 31.7) | 89/8/4% |
RatioH/Q_150 | 0.8583 (0.10) | 0.7732 (0.08) | 0.9714 (0.31) | 0.8332 (0.38) | 0.024 | 0.0 (−18.3; 22.4) | 41/19/41% |
RatioH/Q_200 | 0.8459 (0.09) | 0.7762 (0.12) | 0.9852 (0.29) | 0.8398 (0.39) | 0.035 | −1.2 (−17.7; 18.6) | 35/22/43% |
Variables | Pre | Post | Differences | ||||
---|---|---|---|---|---|---|---|
EG | CG | EG | CG | p Value a | d-Cohen | Change | |
RMSQ_MVC | 0.6543 (0.02) | 0.6708 (0.06) | 0.5453 (0.07) | 0.6161 (0.14) | 0.044 | −6.8 (−17.9; 5.8) | 5/7/88% |
RMSH_MVC | 0.5554 (0.05) | 0.5422 (0.05) | 0.5974 (0.11) | 0.6287 (0.12) | 0.418 | −10.4 (−21.1; 1.6) | 5/6/89% |
RMSQ_50 | 0.6553 (0.02) | 0.6501 (0.02) | 0.5285 (0.15) | 0.5151 (0.24) | 0.585 | −0.9 (−7.0; 5.5) | 5/28/67% |
RMSH_50 | 0.5602 (0.05) | 0.5414 (0.03) | 0.5477 (0.18) | 0.5222 (0.23) | 0.497 | −10.8 (−20.7; 0.4) | 4/4/92% |
RMSQ_100 | 0.6471 (0.02) | 0.6524 (0.02) | 0.5140 (0.15) | 0.5051 (0.24) | 0.843 | 5.3 (−3.0; 14.4) | 81/8/11% |
RMSH_100 | 0.5575 (0.05) | 0.5413 (0.04) | 0.5396 (0.18) | 0.5107 (0.23) | 0.488 | −11.0 (−24.1; 4.3) | 5/10/85% |
RMSQ_150 | 0.6544 (0.02) | 0.6611 (0.02) | 0.4954 (0.15) | 0.5036 (0.24) | 0.781 | −7.4 (−16.2; 2.3) | 5/8/88% |
RMSH_150 | 0.5546 (0.05) | 0.5491 (0.04) | 0.5254 (0.17) | 0.5212 (0.23) | 0.917 | −7.6 (−20.8; 7.8) | 4/20/76% |
RMSQ_200 | 0.6554 (0.02) | 0.6589 (0.02) | 0.4968 (0.14) | 0.5137 (0.24) | 0.795 | −6.3 (−12.5; 0.4) | 4/5/91% |
RMSH_200 | 0.5610 (0.05) | 0.5395 (0.04) | 0.5154 (0.17) | 0.5091 (0.23) | 0.712 | −15.2 (−26.0; −3.0) | 2/2/96% |
RatioH/Q_MVC | 0.8398 (0.05) | 0.8143 (0.10) | 0.9504 (0.18) | 0.8512 (0.10) | 0.836 | 15.9 (2.0; 31.6) | 95/3/2% |
RatioH/Q_50 | 0.8432 (0.05) | 0.8339 (0.06) | 0.9958 (0.15) | 0.8440 (0.10) | 0.186 | 13.3 (−0.5; 29.0) | 92/4/4% |
RatioH/Q_100 | 0.8493 (0.05) | 0.8303 (0.06) | 0.9382 (0.14) | 0.8589 (0.08) | 0.263 | 7.2 (−3.7; 19.3) | 80/14/5% |
RatioH/Q_150 | 0.8368 (0.05) | 0.8318 (0.07) | 0.9368 (0.15) | 0.8501 (0.11) | 0.327 | 8.2 (−4.7; 22.8) | 79/15/4% |
RatioH/Q_200 | 0.8459 (0.05) | 0.8200 (0.07) | 0.9774 (0.17) | 0.8586 (0.10) | 0.298 | 11.5 (−2.1; 26.9) | 88/7/5% |
Variables | Pre | Post | Differences | ||||
---|---|---|---|---|---|---|---|
EG | CG | EG | CG | p Value a | d-Cohen | Change | |
RMSQ_MVC | 0.6721 (0.03) | 0.6123 (0.04) | 0.5762 (0.08) | 0.6209 (0.14) | 0.409 | −3.3 (−13.4; 8.0) | 25/11/64% |
RMSH_MVC | 0.5267 (0.05) | 0.5976 (0.04) | 0.5865 (0.13) | 0.6357 (0.12) | 0.203 | −12.8 (−23.1; −1.1) | 2/4/94% |
RMSQ_50 | 0.6724 (0.03) | 0.5942 (0.05) | 0.5748 (0.07) | 0.6008 (0.18) | 0.312 | −4.0 (−14.7; 8.0) | 22/11/66% |
RMSH_50 | 0.5225 (0.05) | 0.5833 (0.03) | 0.5855 (0.12) | 0.6143 (0.17) | 0.713 | −10.8 (−23.1; 3.4) | 6/8/85% |
RMSQ_100 | 0.6698 (0.03) | 0.6012 (0.04) | 0.5707 (0.08) | 0.5855 (0.18) | 0.568 | −2.9 (−14.5; 10.1) | 29/11/60% |
RMSH_100 | 0.5206 (0.05) | 0.5419 (0.03) | 0.6054 (0.11) | 0.6144 (0.17) | 0.738 | −10.6 (−22.0; 2.4) | 5/8/87% |
RMSQ_150 | 0.6713 (0.03) | 0.6574 (0.05) | 0.5644 (0.08) | 0.5819 (0.18) | 0.503 | −5.2 (−16.9; 8.1) | 20/10/70% |
RMSH_150 | 0.5297 (0.04) | 0.5743 (0.04) | 0.5901 (0.12) | 0.6078 (0.17) | 0.682 | −11.3 (−23.1; 2.4) | 6/6/88% |
RMSQ_200 | 0.6686 (0.03) | 0.6686 (0.02) | 0.5660 (0.07) | 0.5939 (0.18) | 0.328 | −2.6 (−14.0; 10.3) | 30/11/58% |
RMSH_200 | 0.5229 (0.05) | 0.5739 (0.05) | 0.5989 (0.11) | 0.6164 (0.17) | 0.947 | −12.4 (−23.2; −0.1) | 3/5/92% |
RatioH/Q_MVC | 0.7847 (0.08) | 0.8007 (0.05) | 10.04 (0.08) | 0.7869 (0.03) | 0.171 | 25.8 (17.4; 34.8) | 100/0/0% |
RatioH/Q_50 | 0.7862 (0.08) | 0.8125 (0.04) | 10.02 (0.11) | 0.7979 (0.03) | 0.218 | 20.0 (10.0; 31.0) | 100/0/0% |
RatioH/Q_100 | 0.8712 (0.01) | 0.8544 (0.03) | 0.9607 (0.01) | 0.8381 (0.04) | 0.201 | 15.9 (12.2; 19.6) | 100/0/0% |
RatioH/Q_150 | 0.7911 (0.07) | 0.8234 (0.06) | 10.02 (0.14) | 0.8499 (0.04) | 0.269 | 9.4 (0.3; 19.3) | 91/7/2% |
RatioH/Q_200 | 0.7839 (0.09) | 0.7877 (0.06) | 10.01 (0.08) | 0.8065 (0.03) | 0.351 | 20.4 (11.2; 30.3) | 100/0/0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feria-Madueño, A.; Hewett, T.E.; Sánchez-Arteaga, A.; Sañudo, B. Neuromuscular Response during Different Side-Cutting Maneuvers and Its Influence on the Risk of Knee Injuries. Sports 2023, 11, 190. https://doi.org/10.3390/sports11100190
Feria-Madueño A, Hewett TE, Sánchez-Arteaga A, Sañudo B. Neuromuscular Response during Different Side-Cutting Maneuvers and Its Influence on the Risk of Knee Injuries. Sports. 2023; 11(10):190. https://doi.org/10.3390/sports11100190
Chicago/Turabian StyleFeria-Madueño, Adrián, Timothy E. Hewett, Alejandro Sánchez-Arteaga, and Borja Sañudo. 2023. "Neuromuscular Response during Different Side-Cutting Maneuvers and Its Influence on the Risk of Knee Injuries" Sports 11, no. 10: 190. https://doi.org/10.3390/sports11100190
APA StyleFeria-Madueño, A., Hewett, T. E., Sánchez-Arteaga, A., & Sañudo, B. (2023). Neuromuscular Response during Different Side-Cutting Maneuvers and Its Influence on the Risk of Knee Injuries. Sports, 11(10), 190. https://doi.org/10.3390/sports11100190