The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Subjective Fatigue
2.4. CWT Intervention
2.5. Endurance Training Volumes during the Training Camp
2.6. BIA
2.7. UTF Excretion Assay
2.8. RSI Measurement
2.9. Statistical Analysis
2.10. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodaee, M.; Grothe, H.L.; Seyfert, J.H.; Van Baak, K. Athletes at high altitude. Sports Health 2016, 8, 126–132. [Google Scholar] [CrossRef]
- Goldfarb-Rumyantzev, A.S.; Alper, S.L. Short-term responses of the kind to high altitude in mountain climbers. Nephrol. Dial. Transpol. 2014, 29, 497–506. [Google Scholar] [CrossRef]
- Hackett, P.H.; Roachm, R.C. High-altitude medicine and physiology. In Wilderness Medicine; Auerbach, P.S., Ed.; Mosby: Philadelphia, PA, USA, 2012; pp. 2–33. [Google Scholar]
- Koehle, M.S.; Cheng, I.; Sporer, B. Canadian academy of sports and exercise medicine position statement: Athletes at high altitude. Clin. J. Sports Med. 2014, 24, 120–127. [Google Scholar] [CrossRef]
- Inami, T.; Nakagawa, K.; Yonezu, T.; Fukano, M.; Higashihara, A.; Iizuka, S.; Abe, T.; Narita, T. Tracking of time-dependent changes in muscle hardness after a full-marathon. J. Strength Cond. Res. 2019, 33, 3431–3437. [Google Scholar] [CrossRef]
- Higashihara, A.; Nakagawa, K.; Inami, T.; Fukano, M.; Iizuka, S.; Maemichi, T.; Hashizume, S.; Narita, T.; Hirose, N. Regional differences in hamstring muscle damage after marathon. PLoS ONE 2020, 15, e0234401. [Google Scholar] [CrossRef]
- Raastad, T.; Owe, S.G.; Paulsen, G.; Enns, D.; Overgaard, K.; Crameri, R.; Kiil, S.; Belcastro, A.; Bergersen, L.; Hallén, L. Changes in calpain activity, muscle structure, and function after eccentric exercise. Med. Sci. Sports Exerc. 2010, 42, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Nosaka, K.; Libardi, C.A.; Chen, T.C.; Ugrinowitsch, C. Susceptibility to exercise-induced muscle damage: A cluster analysis with a large sample. Int. J. Sports Med. 2016, 37, 633–640. [Google Scholar] [CrossRef]
- Inami, T.; Yamaguchi, S.; Ishida, H.; Kohtake, N.; Morito, A.; Yamada, S.; Shimomasuda, M.; Haramoto, M.; Nagata, N.; Murayama, M. Changes in muscle shear modulus and urinary titin N-terminal fragment after eccentric exercise. J. Sports Sci. Med. 2022, 21, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Shimizu, K.; Sagayama, H.; Fujii, N.; Takahashi, H. Urinary N-terminal fragment of titin: A surrogate marker of serum creatine kinase activity after exercise-induced severe muscle damage. J. Sports Sci. 2021, 39, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Yokota, Y.; Yamada, S.; Yamamoto, D.; Kato, K.; Morito, A.; Takaoka, A. Creatine supplementation alleviates fatigue after exercise through anti-inflammatory action in skeletal muscle and brain. Nutraceuticals 2023, 3, 234–249. [Google Scholar] [CrossRef]
- Sun, J.; Ye, S.; Yin, G.; Xie, Q. The diagnostic value of urinary N-terminal fragment of titin for skeletal muscle damage in idiopathic inflammatory myopathy. Rheumatology 2023, 15, kead109. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Suzuki, K.; Kanda, K.; Okada, J. N-terminal fragments of titin in urine as a biomarker for eccentric exercise-induced muscle damage. J. Phys. Fit. Sports Med. 2020, 9, 21–29. [Google Scholar] [CrossRef]
- Thong, I.S.K.; Jensen, M.P.; Miro, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain. 2018, 18, 99–107. [Google Scholar] [CrossRef]
- Carretero-Krug, A.; Úbeda, N.; Velasco, C.; Medina-Font, J.; Laguna, T.T.; Varela-Moreiras, G.; Montero, A. Hydration status, body composition, and anxiety status in aeronautical military personnel from Spain: A cross-sectional study. Mil. Med. Res. 2021, 8, 35. [Google Scholar] [CrossRef]
- Inami, T.; Yamaguchi, S.; Kim, H.K.; Murayama, M. Localized-bioelectrical impedance vector analysis on mechanical property changes after muscle injury and damage. J. Sports Med. Phys. Fit. 2022, 63, 509–510. [Google Scholar] [CrossRef]
- Shiose, K.; Tanabe, Y.; Ohnishi, T.; Takahashi, H. Effect of regional muscle damage and inflammation following eccentric exercise on electrical resistance and body composition assessment using bioimpedance spectroscopy. J. Physiol. Sci. 2019, 69, 895–901. [Google Scholar] [CrossRef]
- Ge, Y.Z.; Ruan, G.T.; Zhang, Q.; Dong, W.J.; Zhang, X.; Song, M.M.; Zhang, X.W.; Li, X.R.; Zhang, K.P.; Tang, M.; et al. Investigation on the Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) Group. Extracellular water to total body water ratio predicts survival in cancer patients with sarcopenia: A multi-center cohort study. Nutr. Metab. 2022, 19, 34. [Google Scholar] [CrossRef]
- Pournot, H.; Bieuzen, F.; Duffield, R.; Lepretre, P.M.; Cozzolino, C.; Hausswirth, C. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur. J. Appl. Physiol. 2011, 111, 1287–1295. [Google Scholar] [CrossRef]
- Bieuzen, F.; Mleakley, C.M.; Costello, J.T. Contrast water therapy and exercise induced muscle damage: A systematic review and meta-analysis. PLoS ONE 2013, 8, e62356. [Google Scholar] [CrossRef]
- Higgins, D.; Kaminski, T.W. Contrast therapy does not cause fluctuations in huma gastrocnemius intramuscular temperature. J. Athl. Train. 1998, 33, 336–340. [Google Scholar]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive strength index and its associations with measures of physical and sports performance: A systematic review with meta-analysis. Sports Med. 2022, 52, 301–330. [Google Scholar] [CrossRef]
- Young, W. Laboratory strength assessment of athletes. New Stud Athl. 1995, 10, 89. [Google Scholar]
- Rowsell, G.J.; Coutts, A.J.; Reaburn, P.; Hill-Haas, S. Effect of cold-water immersion of on physical performance between successive matches in high-performance junior male soccer players. J. Sports Sci. 2009, 27, 565–573. [Google Scholar] [CrossRef]
- Higgins, T.R.; Climstein, M.; Cameron, M. Evaluation of hydrotherapy, using passive tests and power tests, for recovery across a cyclic week of competitive rugby union. J. Strength Cond. Res. 2013, 27, 954–965. [Google Scholar] [CrossRef]
- Wilcock, I.M.; Cronin, J.B.; Hing, W.A. Physiological response to water immersion: A method for sport recovery? Sports Med. 2006, 36, 747–765. [Google Scholar] [CrossRef]
- Bleakley, C.; McDonough, S.; Gardner, E.; Baxter, G.D.; Hopkins, J.T.; Davison, G.W. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst. Rev. 2012, 2, CD008262. [Google Scholar]
- Stanley, J.; Buchheit, M.; Peake, J.M. The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur. J. Appl. Physiol. 2012, 112, 951–961. [Google Scholar] [CrossRef]
- Maruyama, N.; Asai, T.; Abe, C.; Inada, A.; Kawauchi, T.; Miyashita, K.; Maeda, M.; Matsuo, M.; Nabeshima, Y.I. Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Sci. Rep. 2016, 6, 39375. [Google Scholar] [CrossRef]
- Nicol, C.; Komi, P.V.; Marconnet, P. Fatigue effects of marathon running on neuromuscular performance, Changes in muscle force and stiffness characteristics. Scand. J. Med. Sci. Sports 1991, 1, 10–17. [Google Scholar] [CrossRef]
- Oliver, J.L.; Lloyd, R.S.; Whitney, A. Monitoring of in-season neuromuscular and perceptual fatigue in youth rugby players. Eur. J. Appl. Physiol. 2015, 15, 514–522. [Google Scholar] [CrossRef]
- Yu, J.G.; Fürst, D.O.; Thornell, L.E. The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem. Cell Biol. 2003, 119, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Ojima, K.; Shinkai-Ouchi, F.; Hata, S.; Sorimachi, H. An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016, 122, 169–187. [Google Scholar] [CrossRef] [PubMed]
- van Veen, J.J.; Makris, M. Altitude and coagulation activation: Does going high provoke thrombosis? Acta Haematol. 2008, 119, 156–157. [Google Scholar] [CrossRef]
- Gupta, N.; Ashraf, M.Z. Exposure to high altitude: A risk factor for venous thromboembolism? Semin. Thromb. Hemost. 2012, 38, 156–163. [Google Scholar] [CrossRef]
- Algafly, A.A.; George, K.P. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br. J. Sports Med. 2007, 41, 365–369, discussion. [Google Scholar] [CrossRef]
- Gregson, W.; Black, M.A.; Jones, H.; Milson, J.; Morton, J.; Dawson, B.; Atkinson, G.; Green, D.J. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am. J. Sports Med. 2011, 39, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
Additional Performance Test | ||||||
---|---|---|---|---|---|---|
n | Age (Years) | BMI (kg/m2) | n | Age (Years) | BMI (kg/m2) | |
Contrast water therapy group | 12 | 19.7 ± 0.9 | 20.0 ± 1.9 | 8 | 20.0 ± 1.1 | 20.2 ± 2.1 |
Control group | 10 | 20.3 ± 1.2 | 20.2 ± 1.7 | 8 | 20.1 ± 1.0 | 20.0 ± 1.9 |
Early Morning | Late Morning | Late Afternoon | |
---|---|---|---|
Day 1 | Transfer | 15 km JOG | |
Day2 | 12 km RUN | 15 km JOG + 3–5 × 200 m strides run | CT + 40 min − JOG |
Day 3 | 12 km RUN | 15 km JOG + 3–5 × 200 m strides run | Free |
Day 4 | 12 km JOG | 20–25 km XC | CT + 40 min − JOG |
Day 5 | 12 km RUN | 15 × 500 m (R500 m JOG) | CT + 40 min − JOG |
Day 6 | 12 km RUN | Free | Free |
Day 7 | 12 km JOG | 20–25 km XC | CT + 40 min − JOG |
Day 8 | 12 km RUN | 10–12 × 1 km XC (4′) | CT + 40 min − JOG |
Day 9 | 12 km RUN | Free | Free |
Day 10 | 12 km JOG | 12–15 × 1 km (R200 m JOG) 3′10″-3′00″ | CT + 40 min − JOG |
Day 11 | 12 km RUN | Free | Free |
Day 12 | 12 km RUN | 16 km + 1 km (R400 m JOG) 3′30″-3′15″ | CT + 40 min − JOG |
Day 13 | 15 km JOG | Transfer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inami, T.; Yamaguchi, S.; Nishioka, T.; Chida, K.; Hoshina, K.; Ito, O.; Hashimoto, T.; Murayama, M. The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments. Sports 2023, 11, 232. https://doi.org/10.3390/sports11120232
Inami T, Yamaguchi S, Nishioka T, Chida K, Hoshina K, Ito O, Hashimoto T, Murayama M. The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments. Sports. 2023; 11(12):232. https://doi.org/10.3390/sports11120232
Chicago/Turabian StyleInami, Takayuki, Shota Yamaguchi, Takuya Nishioka, Kenta Chida, Kosaku Hoshina, Osamu Ito, Takeshi Hashimoto, and Mitsuyoshi Murayama. 2023. "The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments" Sports 11, no. 12: 232. https://doi.org/10.3390/sports11120232
APA StyleInami, T., Yamaguchi, S., Nishioka, T., Chida, K., Hoshina, K., Ito, O., Hashimoto, T., & Murayama, M. (2023). The Effect of Contrast Water Therapy on Dehydration during Endurance Training Camps in Moderate-Altitude Environments. Sports, 11(12), 232. https://doi.org/10.3390/sports11120232