Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diniz, R.C.R.; Tourino, F.D.; Lacerda, L.T.; Martins-Costa, H.C.; Lanza, M.B.; Lima, F.V.; Chagas, M.H. Does the Muscle Action Duration Induce Different Regional Muscle Hypertrophy in Matched Resistance Training Protocols? J. Strength Cond. Res. 2022, 36, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Werkhausen, A.; Solberg, C.E.; Paulsen, G.; Bojsen-Møller, J.; Seynnes, O.R. Adaptations to Explosive Resistance Training with Partial Range of Motion Are Not Inferior to Full Range of Motion. Scand. J. Med. Sci. Sport. 2021, 31, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; Colenso-Semple, L.; Phillips, S.M. Training for Strength and Hypertrophy: An Evidence-Based Approach. Curr. Opin. Physiol. 2019, 10, 90–95. [Google Scholar] [CrossRef]
- ACSM. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Hernández-Belmonte, A.; Martínez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibáñez, J. Effects of Range of Motion on Resistance Training Adaptations: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sport. 2021, 31, 1866–1881. [Google Scholar] [CrossRef]
- Kassiano, W.; Costa, D.; Nunes, J.P.; Ribeiro, A.S. Which ROMs Lead to Rome? A Systematic Review of the Effects of Range of Motion on Muscle Hypertrophy. J. Strength Cond. Res. 2023; Epub ahead of printing. [Google Scholar] [CrossRef]
- Mcmahon, G.; Morse, C.I.; Burden, A.; Winwood, K.; Onambélé, G.L. Muscular Adaptations and Insulin-like Growth Factor-1 Responses to Resistance Training Are Stretch-Mediated. Muscle Nerve 2014, 49, 108–119. [Google Scholar] [CrossRef]
- Russ, D.W. Active and Passive Tension Interact to Promote Akt Signaling with Muscle Contraction. Med. Sci. Sports Exerc. 2008, 40, 88–95. [Google Scholar] [CrossRef]
- Rindom, E.; Kristensen, A.M.; Overgaard, K.; Vissing, K.; de Paoli, F.V. Activation of MTORC1 Signalling in Rat Skeletal Muscle Is Independent of the EC-Coupling Sequence but Dependent on Tension per Se in a Dose-Response Relationship. Acta Physiol. 2019, 227, e13336. [Google Scholar] [CrossRef]
- Kooistra, R.D.; Blaauboer, M.E.; Born, J.R.; de Ruiter, C.J.; de Haan, A. Knee Extensor Muscle Oxygen Consumption in Relation to Muscle Activation. Eur. J. Appl. Physiol. 2006, 98, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Fouré, A.; Ogier, A.C.; Guye, M.; Gondin, J.; Bendahan, D. Muscle Alterations Induced by Electrostimulation Are Lower at Short Quadriceps Femoris Length. Eur. J. Appl. Physiol. 2020, 120, 325–335. [Google Scholar] [CrossRef]
- Ozaki, H.; Loenneke, J.P.; Buckner, S.L.; Abe, T. Muscle Growth across a Variety of Exercise Modalities and Intensities: Contributions of Mechanical and Metabolic Stimuli. Med. Hypotheses 2016, 88, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Barclay, R.D.; Burd, N.A.; Tyler, C.; Tillin, N.A.; Mackenzie, R.W. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front. Nutr. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Pedrosa, G.F.; Lima, F.V.; Schoenfeld, B.J.; Lacerda, L.T.; Simões, M.G.; Pereira, M.R.; Diniz, R.C.R.; Chagas, M.H. Partial Range of Motion Training Elicits Favorable Improvements in Muscular Adaptations When Carried out at Long Muscle Lengths. Eur. J. Sport Sci. 2022, 22, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Kassiano, W.; De Londrina, U.E.; Costa, D.; Kunevaliki, G.; Soared, D.; Zacarias, G.; Manske, I.; Takaki, Y.; Ruggiero, M.F.; de Lima Stavinski, N.G.; et al. Greater Gastrocnemius Muscle Hypertrophy after Partial Range of Motion Training Carried out at Long Muscle Lengths. J. Strengnth Cond. Res. 2022. [Google Scholar]
- Sato, S.; Yoshida, R.; Kiyono, R.; Yahata, K.; Yasaka, K.; Nunes, J.P.; Nosaka, K.; Nakamura, M. Elbow Joint Angles in Elbow Flexor Unilateral Resistance Exercise Training Determine Its Effects on Muscle Strength and Thickness of Trained and Non-Trained Arms. Front. Physiol. 2021, 12, 734509. [Google Scholar] [CrossRef] [PubMed]
- Halperin, I.; Vigotsky, A.D.; Foster, C.; Pyne, D.B. Strengthening the Practice of Exercise and Sport-Science Research. Int. J. Sports Physiol. Perform. 2018, 13, 127–134. [Google Scholar] [CrossRef]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of Range of Motion in Heavy Load Squatting on Muscle and Tendon Adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef]
- Franchi, M.V.; Longo, S.; Mallinson, J.; Quinlan, J.I.; Taylor, T.; Greenhaff, P.L.; Narici, M.V. Muscle Thickness Correlates to Muscle Cross-Sectional Area in the Assessment of Strength Training-Induced Hypertrophy. Scand. J. Med. Sci. Sport. 2018, 28, 846–853. [Google Scholar] [CrossRef]
- Earp, J.E.; Newton, R.U.; Cormie, P.; Blazevich, A.J. Inhomogeneous Quadriceps Femoris Hypertrophy in Response to Strength and Power Training. Med. Sci. Sports Exerc. 2015, 47, 2389–2397. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Bench Press at Full Range of Motion Produces Greater Neuromuscular Adaptations Than Partial Executions After Prolonged Resistance Training. J. Strength Cond. Res. 2022, 1, 10–15. [Google Scholar] [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef]
- Graves, J.E.; Pollock, l.M.; Jones, A.; Colvin, A.B.; Leggett, S.H. Specificity of Limited Range of Motion Variable Resistance Training. Med. Sci. Sports Exerc. 1989, 21, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.E.E.E.; Weir, J.P. ASEP Procedures Recommendation I: Accurate Assessment of Muscular Strength and Power. J. Exerc. Physiol. 2001, 4, 1–21. [Google Scholar]
- Beck, T.W. The Importance of a Priori Sample Size Estimation in Strength and Conditioning Research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef]
- Stokes, T.; Tripp, T.R.; Murphy, K.; Morton, R.W.; Oikawa, S.Y.; Lam Choi, H.; McGrath, J.; McGlory, C.; MacDonald, M.J.; Phillips, S.M. Methodological Considerations for and Validation of the Ultrasonographic Determination of Human Skeletal Muscle Hypertrophy and Atrophy. Physiol. Rep. 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; Counts, B.R.; Buckner, S.L.; Loenneke, J.P. Training to Fatigue: The Answer for Standardization When Assessing Muscle Hypertrophy ? Sport. Med. 2016, 47, 1021–1027. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effects of Resistance Training Performed to Repetition Failure or Non-Failure on Muscular Strength and Hypertrophy: A Systematic Review and Meta-Analysis. J. Sport Health Sci. 2022, 11, 202–211. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect Size Estimates: Current Use, Calculations, and Interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P Values: Data Analysis with Estimation Graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef]
- McMahon, G.E.; Morse, C.I.; Burden, A.; Winwood, K.; Onambélé, G.L. Impact of Range of Motion during Ecologically Valid Resistance Training Protocols on Muscle Size, Subcutaneous Fat, and Strength. J. Strength Cond. Res. 2014, 28, 245–255. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sport. Med. 2013, 43, 179–194. [Google Scholar] [CrossRef]
- Miyamoto, N.; Wakahara, T.; Ema, R.; Kawakami, Y. Non-Uniform Muscle Oxygenation despite Uniform Neuromuscular Activity within the Vastus Lateralis during Fatiguing Heavy Resistance Exercise. Clin. Physiol. Funct. Imaging 2013, 33, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Ikeda, Y.; Hirai, T.; Fujikawa, T.; Morita, I. Local Changes of IGF-I MRNA, GH Receptor MRNA, and Fiber Size in Rat Plantaris Muscle Following Compensatory Overload. Jpn. J. Physiol. 2003, 53, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, T.; Ema, R.; Miyamoto, N.; Kawakami, Y. Inter- and Intramuscular Differences in Training-Induced Hypertrophy of the Quadriceps Femoris: Association with Muscle Activation during the First Training Session. Clin. Physiol. Funct. Imaging 2017, 37, 405–412. [Google Scholar] [CrossRef]
- Damas, F.; Libardi, C.A.; Ugrinowitsch, C. The Development of Skeletal Muscle Hypertrophy through Resistance Training: The Role of Muscle Damage and Muscle Protein Synthesis. Eur. J. Appl. Physiol. 2018, 118, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Noorkõiv, M.; Nosaka, K.; Blazevich, A.J. Effects of Isometric Quadriceps Strength Training at Different Muscle Lengths on Dynamic Torque Production. J. Sports Sci. 2015, 33, 1952–1961. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. Sport. Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Thepaut-Mathieu, C.; Van Hoecke, J.; Maton, B. Myoelectrical and Mechanical Changes Linked to Length Specificity during Isometric Training. J. Appl. Physiol. 1988, 64, 1500–1505. [Google Scholar] [CrossRef]
- MacInnis, M.J.; McGlory, C.; Gibala, M.J.; Phillips, S.M. Investigating Human Skeletal Muscle Physiology with Unilateral Exercise Models: When One Limb Is More Powerful than Two. Appl. Physiol. Nutr. Metab. 2017, 42, 563–570. [Google Scholar] [CrossRef]
- Beyer, K.S.; Fukuda, D.H.; Boone, C.H.; Wells, A.J.; Townsend, J.R.; Jajtner, A.R.; Gonzalez, A.M.; Fragala, M.S.; Hoffman, J.R.; Stout, J.R. Short-Term Unilateral Resistance Training Results in Cross Education of Strength without Changes in Muscle Size, Activation, or Endocrine Response. J. Strength Cond. Res. 2016, 30, 1213–1223. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Lambert, N.J.; Hill, J.P. Greater Cross Education Following Training with Muscle Lengthening than Shortening. Med. Sci. Sports Exerc. 1997, 29, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Carroll, T.J. Cross Education: Possible Mechanisms for the Contralateral Effects of Unilateral Resistance Training. Sport. Med. 2007, 37, 1–14. [Google Scholar] [CrossRef]
- Munn, J.; Herbert, R.D.; Gandevia, S.C. Contralateral Effects of Unilateral Resistance Training: A Meta-Analysis. J. Appl. Physiol. 2004, 96, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Bell, Z.W.; Wong, V.; Spitz, R.W.; Chatakondi, R.N.; Viana, R.; Abe, T.; Loenneke, J.P. The Contraction History of the Muscle and Strength Change: Lessons Learned from Unilateral Training Models. Physiol. Meas. 2020, 41, 01TR01. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrosa, G.F.; Simões, M.G.; Figueiredo, M.O.C.; Lacerda, L.T.; Schoenfeld, B.J.; Lima, F.V.; Chagas, M.H.; Diniz, R.C.R. Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports 2023, 11, 39. https://doi.org/10.3390/sports11020039
Pedrosa GF, Simões MG, Figueiredo MOC, Lacerda LT, Schoenfeld BJ, Lima FV, Chagas MH, Diniz RCR. Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports. 2023; 11(2):39. https://doi.org/10.3390/sports11020039
Chicago/Turabian StylePedrosa, Gustavo F., Marina G. Simões, Marina O. C. Figueiredo, Lucas T. Lacerda, Brad J. Schoenfeld, Fernando V. Lima, Mauro H. Chagas, and Rodrigo C. R. Diniz. 2023. "Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl" Sports 11, no. 2: 39. https://doi.org/10.3390/sports11020039
APA StylePedrosa, G. F., Simões, M. G., Figueiredo, M. O. C., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., Chagas, M. H., & Diniz, R. C. R. (2023). Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports, 11(2), 39. https://doi.org/10.3390/sports11020039