Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. VO2maxsw Protocol: Test Reliability
3.2. VO2maxsw Protocol: Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Center for Disease Control. Available online: http://www.cdc.gov/physicalactivity/everyone/guidelines/adults.html (accessed on 21 November 2022).
- Available online: https://resources.fina.org/fina/document/2021/06/03/fb8fc7e9-260a-49f0-b8d0-e00f1cb05970/ActionFINA_03_Technical_Committees.pdf (accessed on 16 January 2023).
- Holmer, I. Oxygen uptake during swimming in man. J. Appl. Physiol 1972, 33, 502–509. [Google Scholar] [CrossRef]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Lopes, V.P.; Barbosa, T.M. Determinant Factors of Long-Term Performance Development in Young Swimmers. Int. J. Sports Physiol. Perform. 2017, 12, 198–205. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Fernandes, R.J.; Ribeiro, J.; Denadai, B.S.; Greco, C.C.; Vilas-Boas, J.P. Comparison of different methods for the swimming aerobic capacity evaluation. J. Strength Cond. Res. 2018, 32, 3542–3551. [Google Scholar] [CrossRef]
- Nordsborg, N.B.; Espinosa, H.G.; Theil, D.V. Estimating energy expenditure during front crawl swimming using accelerometers. Procedia Eng. 2014, 72, 132–137. [Google Scholar] [CrossRef]
- Scurati, R.; Gatta, G.; Michielon, G.; Cortesi, M. Techniques and considerations for monitoring swimmers’ passive drag. J. Sports Sci. 2019, 37, 1168–1180. [Google Scholar] [CrossRef]
- Unnithan, V.; Holohan, J.; Fernhall, B.; Wylegala, J.; Rowland, T.; Pendergast, D.R. Aerobic Cost in Elite Female Adolescent Swimmers. Int. J. Sport. Med. 2009, 30, 194–199. [Google Scholar] [CrossRef]
- Astrand, P.O.; Englesson, S. A swimming flume. J. Appl. Physiol. 1972, 33, 514. [Google Scholar] [CrossRef]
- McLEAN, S.P.; Palmer, D.; Ice, G.; Truijens, M.; Smith, J.C. Oxygen uptake response to stroke rate manipulation in freestyle swimming. Med. Sci. Sport. Exerc. 2010, 42, 1909–1913. [Google Scholar] [CrossRef]
- Narita, K.; Nakashima, M.; Takagi, H. Developing a methodology for estimating the drag in front-crawl swimming at various velocities. J. Biomech. 2017, 54, 123–128. [Google Scholar] [CrossRef]
- Sokołowski, K.; Strzała, M.; Stanula, A.; Kryst, Ł.; Radecki-Pawlik, A.; Krężałek, P.; Rosemann, T.; Knechtle, B. Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 6062. [Google Scholar] [CrossRef]
- Bestard, M.A.; Rothschild, J.A.; Crocker, G.H. Effect of low-and high-carbohydrate diets on swimming economy: A crossover study. J. Int. Soc. Sport. Nutr. 2020, 17, 64. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, D.; Schüller, T.; Iglesias, X.; Hoffmann, U.; Rodríguez, F.A. A new model for estimating peak oxygen uptake based on postexercise measurements in swimming. Int. J. Sport Physiol. Perform. 2016, 11, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Figueiredo, P.; Sousa, A.; Monteiro, J.; Pelarigo, J.; Vilas-Boas, J.P.; Toussaint, H.M. VO2 kinetics and metabolic contributions during full and upper body extreme swimming velocity. Eur. J. Appl. Physiol. 2015, 115, 1117–1124. [Google Scholar] [CrossRef]
- Costill, D.L.; Maglischo, E.W.; Richardson, A.B. Handbook of Sports Medicine and Science, Swimming; Blackwell Publishing: Boston, MA, USA, 1992; pp. 129–131. [Google Scholar]
- Nagle, E.F.; Zoeller, R.L.; Robertson, R.J.; Chiapetta, L.B.; Goss, F.L.; Moyna, N.M. Prediction of Performance Using Physiological and Stroke Variables in a Sample of Adult Competitive Swimmers. J. Swim. Res. 2004, 16, 31–37. [Google Scholar]
- Demarie, S.; Chricio, E.; Billat, V. Which of the Physiological vs. Critical Speed is a Determinant of Modern Pentathlon 200 m front crawl swimming performance: The influence of protocol and ergometer vs. Swimming pool conditions. Sports 2022, 10, 201. [Google Scholar] [CrossRef]
- Espinosa, H.G.; Nordsborg, N.; Thiel, D.V. Front crawl swimming analysis using accelerometers: A preliminary comparison between pool and flume. Procedia Eng. 2015, 112, 497–501. [Google Scholar] [CrossRef]
- Lomax, M.; Mayger, B.; Saynor, Z.L.; Vine, C.; Massey, H.C. Practical considerations for assessing pulmonary gas exchange and ventilation during flume swimming using the MetaSwim metabolic cart. J. Strength Cond. Res. 2019, 33, 1941–1953. [Google Scholar] [CrossRef]
- Hay, J.C.; Carmo, J. Swimming techniques used in the flume differ from those used in a pool. In Proceedings of the XV International Society of Biomechanics Congress, Jyvaskyla, Finland, 2–6 July 1995; Hakkinen, K., Ed.; S.I. International Society of Biomechanics: Jyvaskyla, Finland, 1995; pp. 372–373. [Google Scholar]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar]
- Mccrory, M.A.; Gomez, T.D.; Bernauer, E.M.; Mol, P.A. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med. Sci. Sport. Exerc. 1995, 27, 1686–1691. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Razee, K.; Dube, J.; Andreacci, J. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med. Sci. Sport. Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef]
- Robertson, R.J. Perceived Exertion for Practitioners: Rating Effort with the OMNI Picture System; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Duncan, G.E.; Howley, E.T.; Johnson, B.N. Applicability of VO2max criteria: Discontinuous versus continuous protocols. Med. Sci. Sports Exerc. 1997, 29, 273–278. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Lambrick, D.; Mauger, A.; Woolley, B.; Faulkner, J. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test. Biol. Sport 2016, 33, 269–275. [Google Scholar] [CrossRef]
- Nagle, E.F.; Sanders, M.E.; Gibbs, B.B.; Franklin, B.A.; Nagle, J.A.; Prins, P.J.; Johnson, C.D.; Robertson, R.J. Reliability and Accuracy of a Standardized Shallow Water Running Test to Determine Cardiorespiratory Fitness. J. Strength Cond. Res. 2016, 31, 1669–1677. [Google Scholar] [CrossRef]
- Nagle, E.F.; Nagai, T.; Beethe, A.Z.; Lovalekar, M.T.; Zera, J.N.; Connaboy, C.; Abt, J.P.; Beals, K.; Nindl, B.C.; Robertson, R.J.; et al. Reliability and validity of a pool-based maximal oxygen uptake test to examine high-intensity short-duration freestyle swimming performance. J. Strength Cond. Res. 2019, 33, 1208–1215. [Google Scholar] [CrossRef]
- Kalva-Filho, C.A.; Zagatto, A.M.; Araújo, M.I.; Santiago, P.R.; da Silva, A.S.; Gobatto, C.A.; Papoti, M. Relationship between aerobic and anaerobic parameters from 3-minute all-out tethered swimming and 400-m maximal front crawl effort. J. Strength Cond. Res. 2015, 29, 238–245. [Google Scholar] [CrossRef]
- Rodríguez, F.; Keskinen, K.; Keskinen, O. Oxygen uptake kinetics during front crawl swimming. Arch. Sport. Med. 2008, 25, 128. [Google Scholar]
- Wakayoshi, K.; Ikuta, K.; Yoshida, T.; Udo, M.; Moritani, T.; Mutoh, Y.; Miyashita, M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur. J. Appl. Physiol. 1992, 64, 153–157. [Google Scholar] [CrossRef]
- Zamparo, P.; Bonifazi, M.; Faina, M.; Milan, A.; Sardella, F.; Schena, F.; Capelli, C. Energy cost of swimming of elite long-distance swimmers. Eur. J. Appl. Physiol. 2005, 94, 697–704. [Google Scholar] [CrossRef]
- Laffite, L.P.; Vilas-Boas, J.P.; Demarle, A.; Silva, J.; Fernandes, R.J.; Billat, V. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can. J. Appl. Physiol. 2004, 29, S17–S31. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; White, A.C.; Dalleck, L.C. Supramaximal testing to confirm attainment of VO2max in sedentary men and women. Int. J. Sports Med. 2009, 30, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Roffey, D.M.; Byrne, N.M.; Hills, A. Effect of Stage Duration on Physiological Variables Commonly Used to Determine Maximum Aerobic Performance During Cycle Ergometry. J. Sport Sci. 2007, 25, 1325–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, A.V.; Da Cunha-Costa, M.; Barbosa, T. Applicability of an Indirect VO2max test: Its association with the 400-meter freestyle performance. Mot. Rev. Educ. Física 2016, 22, 304–309. [Google Scholar] [CrossRef]
- Reis, J.F.; Alves, F.; Bruno, P.M.; Vleck, V.; Millet, G. Oxygen uptake kinetics and middle distance performance. J. Sci. Med. Sport 2012, 15, 58–63. [Google Scholar] [CrossRef]
- Zacca, R.; Fernandes, R.J.P.; Pyne, D.B.; Castro, F.A.D.S. Swimming training assessment: The critical velocity and the 400-m test for age group swimmers. J. Strength Cond. Res. 2016, 30, 1365–1372. [Google Scholar] [CrossRef]
- Zacca, R.; Sousa, M.; Fermandes, M.L. Can aerobic power (VO2max) be assessed by backward extrapolation in swimming? J. Strength Cond. Res. 2014, 28, 130. [Google Scholar]
- Wilson, B.; Takagi, H.; Pease, D. Technique comparison of pool and flume swimming. In Biomechanics and Medicine in Swimming VIII: Proceedings of the International Symposium On Biomechanics and Medicine in Swimming; University of Jyväskyla: Jyväskyla, Finland, 1998; pp. 181–184. [Google Scholar]
- Beanland, E.; Main, L.C.; Aisbett, B.; Gastin, P.; Netto, K. Validation of gps and accelerometer technology in swimming. J. Sci. Med. Sport 2014, 17, 234–238. [Google Scholar] [CrossRef]
- Guignard, B.; Rouard, A.; Chollet, D.; Bonifazi, M.; Vedova, D.D.; Hart, J.; Seifert, L. Coordination Dynamics of Upper Limbs in Swimming: Effects of Speed and Fluid Flow Manipulation. Res. Q. Exerc. Sport 2020, 91, 433–444. [Google Scholar] [CrossRef]
- Beethe, A.Z.; Nagle, E.F.; Lovalekar, M.; Nagai, T.; Nindl, B.C.; Connaboy, C. Improvement of Flutter-Kick Performance in Novice Surface Combat Swimmers With Increased Hip Strength. Int. J. Sport. Physiol. Perform. 2018, 13, 1392–1399. [Google Scholar] [CrossRef]
- Ruiz-Navarro, J.J.; Morouço, P.G.; Arellano, R. Relationship Between Tethered Swimming in a Flume and Swimming Performance. Int. J. Sport. Physiol. Perform. 2020, 15, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, R.; Bonifazi, M.; Zamparo, P.; Piacentini, M.F. Characteristics and Challenges of Open Water Swimming Performance: A Review. Int. J. Sport. Physiol. Perform. 2017, 12, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Guignard, B.; Rouard, A.; Chollet, D.; Ayad, O.; Bonifazi, M.; Vedova, D.D.; Seifert, L. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination. Hum. Mov. Sci. 2017, 55, 240–254. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 19) |
---|---|
Age (yrs) | 28.5 (8.3) |
Height (cm) | 174.7 (8.2) |
Mass (kg) | 72.9 (12.5) |
BMI (kg·m−2) | 23.7 (2.6) |
Bodyfat (%) | 21.4 (5.9) |
Fat Free Mass (kg) | 57.3 (11.8) |
457 m swim (seconds) | 469.4 (94.7) |
VO2maxsw (mL∙kg−1 ∙min−1) | 46.7 (8.6) |
Flume Stage Termination | 5.7 (0.8) |
Flume Time Termination (seconds) | 477.76 (108.3) |
HR max (beats·min−1) | 172.0 (18.1) |
Percent HR Max (%) | 89.4 (9.0) |
O2pulse (mL·beat−1) | 0.3 (0.1) |
RER Max | 1.2 (0.3) |
VEmax (L·min−1) | 103.5 (20.2) |
IPE-RPE (OMNI, 0–10) | 8.5 (1.1) |
IPE [BLa] (mmol·L−1) | 9.3 (3.8) |
Variable | VO2maxsw Trial A | VO2maxsw Trial B † | ICC (95% CI) | p-Value | SEM | MD |
---|---|---|---|---|---|---|
VO2maxsw (mL∙kg−1 ∙min−1) | 46.7+/−8.6 | 47.9+/−8.5 ^# | 0.628 (0.25, 0.83) | 0.002 | 5.25 | 14.55 |
HRmax (beats∙min−1) | 172.0+/−18.1 | 174.8+/−11.8 ^# | 0.403 (−0.05,0.71) | 0.041 | 11.86 | 32.87 |
O2pulse (mL·beat−1) | 0.3+/−0.1 | 0.3+/−0.1 ^# | 0.502 (0.06,0.77) | 0.014 | 0.05 | 0.13 |
RERmax | 1.2+/−0.3 | 1.1+/−0.2 ^ | 0.559 (0.16,0.80) | 0.002 | 0.16 | 0.44 |
VEmax (L·min−1) | 103.5+/−20.2 | 111.6+/−25.3 ^# | 0.671 (0.32,0.85) | <0.001 | 12.49 | 34.62 |
IPE-RPE (OMNI, 0–10) | 8.4+/−1.0 | 8.8+/−0.8 ^ | 0.539 (0.101,0.808) | 0.006 | 0.58 | 1.59 |
IPE [BLa](mmol·L−1) | 9.3+/−3.8 | 10.4 +/−2.5 ^# | 0.716 (0.346,0.894) | <0.001 | 1.64 | 4.55 |
Final test time (s) | 477.8+/−108.3 | 451.3 +/−54.5 ^# | 0.608 (0.201,0.841) | 0.004 | 52.66 | 145.97 |
Test Protocol | VO2 Trial A | VO2 Trial B | ICC (95% CI) | p-Value | SEM | MD |
---|---|---|---|---|---|---|
Stage 1 (50% effort) (n = 17) | 28.5+/−5.4 | 35.7+/−24.2 | 0.000 (−0.49, 0.42) | 0.577 | 17.99 | 49.86 |
Stage 2 (70% effort) (n = 17) | 31.6+/−5.9 | 31.3+/−5.2 | 0.469 (−0.01, 0.77) | 0.029 | 4.11 | 11.39 |
Stage 3 (90% effort) (n = 17) | 34.8+/−6.7 | 35.4+/−4.8 | 0.465 (−0.01,0.76) | 0.030 | 4.32 | 11.98 |
Stage 4 (100% effort) (n = 17) | 40.0+/−6.8 | 41.2+/−6.8 | 0.669 (0.30, 0.86) | 0.001 | 3.92 | 10.85 |
Stage 5 (100% effort) (n = 15) | 44.0+/−7.8 | 44.3+/−7.5 | 0.588 (0.13, 0.83) | 0.008 | 5.00 | 13.86 |
Stage 6 (100% effort) (n = 9) | 46.6+/−6.9 | 50.1+/−9.3 | 0.606 (0.01, 0.89) | 0.014 | 4.35 | 12.05 |
Variable | 457 m Swim Time |
---|---|
VO2maxsw (mL∙kg−1 ∙min−1) | −0.648 (0.005) |
HR max (beats∙min−1) | 0.039 (0.881) |
O2pulse (mL·beat−1) | −0.623 (0.008) |
RERmax | −0.125 (0.633) |
VEmax (L·min−1) | −0.509 (0.037) |
IPE-RPE | 0.322 (0.224) |
IPE [BLa] (mmol·L−1) | −0.494 (0.061) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagle, E.F.; Nagai, T.; Beethe, A.; Lovalekar, M.; Tuite, M.S.; Beckner, M.E.; Zera, J.N.; Sanders, M.E.; Connaboy, C.; Abt, J.P.; et al. Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports 2023, 11, 42. https://doi.org/10.3390/sports11020042
Nagle EF, Nagai T, Beethe A, Lovalekar M, Tuite MS, Beckner ME, Zera JN, Sanders ME, Connaboy C, Abt JP, et al. Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports. 2023; 11(2):42. https://doi.org/10.3390/sports11020042
Chicago/Turabian StyleNagle, Elizabeth F., Takashi Nagai, Anne Beethe, Mita Lovalekar, Meghan S. Tuite, Meaghan E. Beckner, Jacquelyn N. Zera, Mary E. Sanders, Chris Connaboy, John P. Abt, and et al. 2023. "Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test" Sports 11, no. 2: 42. https://doi.org/10.3390/sports11020042
APA StyleNagle, E. F., Nagai, T., Beethe, A., Lovalekar, M., Tuite, M. S., Beckner, M. E., Zera, J. N., Sanders, M. E., Connaboy, C., Abt, J. P., Beals, K., Lephart, S. M., Robertson, R. J., & Nindl, B. C. (2023). Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports, 11(2), 42. https://doi.org/10.3390/sports11020042