Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. 1RM Back Squat and Jump Familiarization
2.4. Jump Testing Sessions
2.5. Data Analyses
2.6. Statistical Analyses
3. Results
3.1. Exercise Main Effect
3.2. Load Main Effect
3.3. Exercise x Load Interaction Effect
3.4. Force–Time Curve Comparisons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, R.U.; Kraemer, W.J.; Häkkinen, K.; Humphries, B.; Murphy, A.J. Kinematics, kinetics, and muscle activation during explosive upper body movements. J. Appl. Biomech. 1996, 12, 31–43. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Taber, C.B.; Sole, C.J.; Stone, M.H. Force-time differences between ballistic and non-ballistic half-squats. Sports 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Gollie, J.M.; Davis, S.E.; Guers, J.J.; Witmer, C.A. The effects of load on system and lower-body joint kinetics during jump squats. Sports Biomech. 2012, 11, 492–506. [Google Scholar] [CrossRef] [PubMed]
- De Villarreal, E.S.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef]
- Swinton, P.A.; Stewart, A.D.; Lloyd, R.; Agouris, I.; Keogh, J.W. Effect of load positioning on the kinematics and kinetics of weighted vertical jumps. J. Strength Cond. Res. 2012, 26, 906–913. [Google Scholar] [CrossRef]
- Suchomel, T.J.; McKeever, S.M.; Sijuwade, O.; Carpenter, L.; McMahon, J.J.; Loturco, I.; Comfort, P. The effect of load placement on the power production characteristics of three lower extremity jumping exercises. J. Hum. Kinet. 2019, 68, 109–122. [Google Scholar] [CrossRef]
- Swinton, P.A.; Stewart, A.; Agouris, I.; Keogh, J.W.; Lloyd, R. A biomechanical analysis of straight and hexagonal barbell deadlifts using submaximal loads. J. Strength Cond. Res. 2011, 25, 2000–2009. [Google Scholar] [CrossRef]
- Camara, K.D.; Coburn, J.W.; Dunnick, D.D.; Brown, L.E.; Galpin, A.J.; Costa, P.B. An examination of muscle activation and power characteristics while performing the deadlift exercise with straight and hexagonal barbells. J. Strength Cond. Res. 2016, 30, 1183–1188. [Google Scholar] [CrossRef]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef]
- Dayne, A.M.; McBride, J.M.; Nuzzo, J.L.; Triplett, N.T.; Skinner, J.; Burr, A. Power output in the jump squat in adolescent male athletes. J. Strength Cond. Res. 2011, 25, 585–589. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar]
- Turner, T.S.; Tobin, D.P.; Delahunt, E. Optimal loading range for the development of peak power output in the hexagonal barbell jump squat. J. Strength Cond. Res. 2015, 29, 1627–1632. [Google Scholar] [CrossRef]
- Kipp, K.; Comfort, P.; Suchomel, T.J. Comparing biomechanical time series data during the hang-power clean and jump shrug. J. Strength Cond. Res. 2021, 35, 2389–2396. [Google Scholar] [CrossRef]
- Kipp, K.; Malloy, P.J.; Smith, J.; Giordanelli, M.D.; Kiely, M.T.; Geiser, C.F.; Suchomel, T.J. Mechanical demands of the hang power clean and jump shrug: A joint-level perspective. J. Strength Cond. Res. 2018, 32, 466–474. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Taber, C.B.; Wright, G.A. Jump shrug height and landing forces across various loads. Int. J. Sports Physiol. Perform. 2016, 11, 61–65. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wright, G.A.; Kernozek, T.W.; Kline, D.E. Kinetic comparison of the power development between power clean variations. J. Strength Cond. Res. 2014, 28, 350–360. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wright, G.A.; Lottig, J. Lower extremity joint velocity comparisons during the hang power clean and jump shrug at various loads. In Proceedings of the XXXIInd International Conference of Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; pp. 749–752. [Google Scholar]
- Suchomel, T.J.; Beckham, G.K.; Wright, G.A. Lower body kinetics during the jump shrug: Impact of load. J. Trainol. 2013, 2, 19–22. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J. Force-time curve comparison between weightlifting derivatives. Int. J. Sports Physiol. Perform. 2017, 12, 431–439. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J. Power-time curve comparison between weightlifting derivatives. J. Sports Sci. Med. 2017, 16, 407–413. [Google Scholar]
- Suchomel, T.J.; McKeever, S.M.; Nolen, J.D.; Comfort, P. Muscle architectural and force-velocity curve adaptations following 10 weeks of training with weightlifting catching and pulling derivatives. J. Sports Sci. Med. 2022, 21, 504–516. [Google Scholar] [CrossRef]
- Suchomel, T.J.; McKeever, S.M.; Comfort, P. Training with weightlifting derivatives: The effects of force and velocity overload stimuli. J. Strength Cond. Res. 2020, 34, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; McKeever, S.M.; McMahon, J.J.; Comfort, P. The effect of training with weightlifting catching or pulling derivatives on squat jump and countermovement jump force-time adaptations. J. Funct. Morphol. Kinesiol. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. The effect of barbell load on vertical jump landing force-time characteristics. J. Strength Cond. Res. 2021, 35, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Mundy, P.D.; Smith, N.A.; Lauder, M.A.; Lake, J.P. The effects of barbell load on countermovement vertical jump power and net impulse. J. Sports Sci. 2017, 35, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation following ballistic and non-ballistic complexes: The effect of strength level. J. Strength Cond. Res. 2016, 30, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; DeWeese, B.H.; Beckham, G.K.; Serrano, A.J.; Sole, C.J. The jump shrug: A progressive exercise into weightlifting derivatives. Strength Cond. J. 2014, 36, 43–47. [Google Scholar] [CrossRef]
- DeWeese, B.H.; Serrano, A.J.; Scruggs, S.K.; Burton, J.D. The midthigh pull: Proper application and progressions of a weightlifting movement derivative. Strength Cond. J. 2013, 35, 54–58. [Google Scholar] [CrossRef]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2014. Available online: https://sportsci.org/ (accessed on 15 December 2022).
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative net vertical impulse determines jumping performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Sole, C.J.; Mizuguchi, S.; Sato, K.; Moir, G.L.; Stone, M.H. Phase characteristics of the countermovement jump force-time curve: A comparison of athletes by jumping ability. J. Strength Cond. Res. 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Strength Cond. Res. 1992, 6, 129–134. [Google Scholar]
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- Enoka, R.M. The pull in olympic weightlifting. Med. Sci. Sports 1979, 11, 131–137. [Google Scholar]
Load (% BM) | Variable | ||||
---|---|---|---|---|---|
MF (N·kg−1) | Duration (s) | PP (W·kg−1) | FPP (N·kg−1) | VPP (m·s−1) | |
Jump Squat | |||||
0 | 18.7 ± 2.6 | 0.26 ± 0.04 | 45.0 ± 5.4 | 20.8 ± 1.8 | 2.16 ± 0.22 |
g | −3.28 (−4.46–−2.10) | - | −0.13 (−0.90–0.64) | −5.10 (−6.69–−3.52) | - |
20 | 20.7 ± 1.7 | 0.29 ± 0.50 | 45.6 ± 4.5 | 22.8 ± 1.7 | 2.00 ± 0.15 |
g | −3.01 (−4.13–−1.89) | 0.70 (−0.09–1.50) | - | −4.12 (−5.47–−2.76) | −0.84 (−1.64–−0.04) |
40 | 22.1 ± 1.7 | 0.32 ± 0.06 | 45.1 ± 4.5 | 24.7 ± 1.5 | 1.82 ± 0.13 |
g | −2.24 (−3.22–−1.26) | 1.19 (0.36–2.03) | −0.11 (−0.88–0.66) | −3.10 (−4.24–−1.96) | −1.84 (−2.75–−0.92) |
60 | 23.3 ± 1.6 | 0.37 ± 0.07 | 44.2 ± 4.0 | 26.6 ± 1.4 | 1.66 ± 0.10 |
g | −1.62 (−2.51–−0.74) | 1.74 (0.84–2.65) | −0.32 (−1.09–0.46) | −2.11 (−3.07–−1.15) | −2.82 (−3.91–−1.74) |
80 | 25.7 ± 2.0 | 0.38 ± 0.08 | 43.3 ± 4.2 | 28.5 ± 1.5 | 1.52 ± 0.11 |
g | −0.35 (−1.13–0.42) | 1.70 (0.80–2.59) | −0.52 (−1.31–0.26) | −0.89 (−1.70–−0.09) | −3.62 (−4.87–−2.37) |
100 | 26.4 ± 1.9 | 0.42 ± 0.09 | 40.8 ± 4.1 | 29.9 ± 1.7 | 1.36 ± 0.09 |
g | - | 2.09 (1.13–3.05) | −1.07 (−1.90–−0.25) | - | −4.62 (−6.09–−3.15) |
Hexagonal Barbell Jump | |||||
0 | 19.6 ± 1.9 | 0.26 ± 0.04 | 47.7 ± 6.0 | 21.2 ± 1.9 | 2.25 ± 0.20 |
g | −4.05 (−5.40–−2.71) | - | −0.14 (−0.91–0.63) | −4.94 (−6.49–−3.40) | - |
20 | 21.3 ± 1.9 | 0.28 ± 0.05 | 48.5 ± 5.0 | 23.7 ± 1.8 | 2.05 ± 0.13 |
g | −2.93 (−4.03–−1.82) | 0.45 (−0.33–1.23) | - | −3.65 (−4.90–−2.39) | −1.16 (−1.99–−0.33) |
40 | 22.6 ± 2.1 | 0.32 ± 0.06 | 48.0 ± 5.2 | 25.2 ± 2.0 | 1.91 ± 0.12 |
g | −2.07 (−3.02–−1.11) | 1.12 (0.29–1.95) | −0.10 (−0.87–0.67) | −2.59 (−3.63–−1.55) | −2.06 (−3.01–−1.11) |
60 | 24.0 ± 2.1 | 0.35 ± 0.06 | 47.3 ± 5.5 | 26.8 ± 1.9 | 1.76 ± 0.12 |
g | −1.30 (−2.15–−0.46) | 1.61 (0.72–2.49) | −0.23 (−1.00–0.55) | −1.73 (−2.63–−0.83) | −2.90 (−4.00–−1.80) |
80 | 24.9 ± 1.5 | 0.39 ± 0.06 | 45.1 ± 5.5 | 28.1 ± 1.6 | 1.60 ± 0.12 |
g | −0.95 (−1.76–−0.14) | 2.33 (1.34–3.33) | −0.63 (−1.42–0.16) | −1.08 (−1.90–−0.25) | −3.85 (−5.14–−2.55) |
100 | 26.3 ± 1.3 | 0.41 ± 0.06 | 42.6 ± 4.2 | 29.8 ± 1.5 | 1.43 ± 0.10 |
g | - | 2.63 (1.58–3.68) | −1.25 (−2.10–−0.41) | - | −5.09 (−6.68–−3.51) |
Jump Shrug | |||||
0 | 20.9 ± 1.8 | 0.23 ± 0.05 | 49.5 ± 6.7 | 23.8 ± 1.2 | 2.08 ± 0.22 |
g | −2.81 (−3.89–−1.73) | - | - | −4.91 (−6.45–−3.37) | - |
20 | 21.8 ± 1.4 | 0.27 ± 0.07 | 48.8 ± 4.3 | 26.0 ± 1.2 | 1.88 ± 0.15 |
g | −2.65 (−3.71–−1.60) | 0.58 (−0.21–1.36) | −0.13 (−0.90–0.64) | −3.27 (−4.45–−2.10) | −1.04 (−1.86–−0.22) |
40 | 22.7 ± 1.2 | 0.30 ± 0.06 | 48.3 ± 4.2 | 27.5 ± 1.4 | 1.75 ± 0.12 |
g | −2.23 (−3.21–−1.25) | 1.20 (0.36–2.03) | −0.22 (−0.99–0.56) | −2.03 (−2.98–−1.09) | −1.76 (−2.66–−0.85) |
60 | 24.2 ± 1.0 | 0.33 ± 0.07 | 45.5 ± 4.5 | 28.7 ± 1.6 | 1.58 ± 0.10 |
g | −1.25 (−2.09–−0.41) | 1.58 (0.70–2.47) | −0.69 (−1.48–0.10) | −1.16 (−1.99–−0.33) | −2.80 (−3.88–−1.72) |
80 | 24.7 ± 1.3 | 0.37 ± 0.07 | 42.1 ± 5.1 | 29.5 ± 1.5 | 1.42 ± 0.13 |
g | −0.82 (−1.62–−0.02) | 2.40 (1.39–3.40) | −1.25 (−2.04–−0.37) | −0.68 (−1.47–0.11) | −3.48 (−4.69–−2.26) |
100 | 25.9 ± 1.5 | 0.40 ± 0.07 | 39.5 ± 4.1 | 30.6 ± 1.5 | 1.29 ± 0.10 |
g | - | 2.62 (1.57–3.67) | −1.75 (−2.65–−0.84) | - | −4.45 (−5.89–−3.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchomel, T.J.; McKeever, S.M.; Sijuwade, O.; Carpenter, L. Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women. Sports 2023, 11, 44. https://doi.org/10.3390/sports11020044
Suchomel TJ, McKeever SM, Sijuwade O, Carpenter L. Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women. Sports. 2023; 11(2):44. https://doi.org/10.3390/sports11020044
Chicago/Turabian StyleSuchomel, Timothy J., Shana M. McKeever, Olusegun Sijuwade, and Logan Carpenter. 2023. "Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women" Sports 11, no. 2: 44. https://doi.org/10.3390/sports11020044
APA StyleSuchomel, T. J., McKeever, S. M., Sijuwade, O., & Carpenter, L. (2023). Propulsion Phase Characteristics of Loaded Jump Variations in Resistance-Trained Women. Sports, 11(2), 44. https://doi.org/10.3390/sports11020044