Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup and Protocol
2.3. Training Protocol
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Changes in Passive Torque after Completion of the Stretch Training Protocol
3.2. Changes in MG Architecture after Completion of the Stretch Training Protocol
3.3. Estimation of the Relative Changes in Length after Completion of the Stretch Training Protocol
4. Discussion
4.1. Changes in Passive Torque
4.2. Changes in Muscle Architecture
4.3. Estimation of the Relative Contribution of Fascicles and Tendon
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longo, S.; Ce, E.; Bisconti, A.V.; Rampichini, S.; Doria, C.; Borrelli, M.; Limonta, E.; Coratella, G.; Esposito, F. The effects of 12 weeks of static stretch training on the functional, mechanical, and architectural characteristics of the triceps surae muscle-tendon complex. Eur. J. Appl. Physiol. 2021, 121, 1743–1758. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yoshida, R.; Sato, S.; Yahata, K.; Murakami, Y.; Kasahara, K.; Fukaya, T.; Takeuchi, K.; Nunes, J.P.; Konrad, A. Comparison Between High- and Low-Intensity Static Stretching Training Program on Active and Passive Properties of Plantar Flexors. Front. Physiol. 2021, 12, 796497. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.R.; Mendes, B.; Le Sant, G.; Andrade, R.J.; Nordez, A.; Milanovic, Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand. J. Med. Sci. Sports 2018, 28, 794–806. [Google Scholar] [CrossRef] [Green Version]
- Arntz, F.; Markov, A.; Behm, D.G.; Behrens, M.; Negra, Y.; Nakamura, M.; Moran, J.; Chaabene, H. Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis. Sports Med. 2023, 53, 723–745. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.P.; Simonsen, E.B.; Aagaard, P.; Kjaer, M. Biomechanical responses to repeated stretches in human hamstring muscle in vivo. Am. J. Sports Med. 1996, 24, 622–628. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.P.; Kremenic, I.J.; Fox, M.B.; Gleim, G.W. The role of mechanical and neural restraints to joint range of motion during passive stretch. Med. Sci. Sports Exerc. 1998, 30, 928–932. [Google Scholar]
- Toft, E.; Espersen, G.T.; Kalund, S.; Sinkjaer, T.; Hornemann, B.C. Passive tension of the ankle before and after stretching. Am. J. Sports Med. 1989, 17, 489–494. [Google Scholar] [CrossRef]
- Sale, D.; Quinlan, J.; Marsh, E.; McComas, A.J.; Belanger, A.Y. Influence of joint position on ankle plantarflexion in humans. J. Appl. Physiol. 1982, 52, 1636–1642. [Google Scholar] [CrossRef]
- Oba, K.; Samukawa, M.; Abe, Y.; Suzuki, Y.; Komatsuzaki, M.; Kasahara, S.; Ishida, T.; Tohyama, H. Effects of Intermittent and Continuous Static Stretching on Range of Motion and Musculotendinous Viscoelastic Properties Based on a Duration-Matched Protocol. Int. J. Environ. Res. Public Health 2021, 18, 10632. [Google Scholar] [CrossRef]
- Avela, J.; Finni, T.; Liikavainio, T.; Niemela, E.; Komi, P.V. Neural and mechanical responses of the triceps surae muscle group after 1 h of repeated fast passive stretches. J. Appl. Physiol. 2004, 96, 2325–2332. [Google Scholar] [CrossRef]
- Guissard, N.; Duchateau, J. Neural aspects of muscle stretching. Exerc. Sport Sci. Rev. 2006, 34, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Weppler, C.H.; Magnusson, S.P. Increasing muscle extensibility: A matter of increasing length or modifying sensation? Phys. Ther. 2010, 90, 438–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2001, 90, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, K.; Kawakami, Y.; Fukunaga, T. Influence of elastic properties of tendon structures on jump performance in humans. J. Appl. Physiol. 1999, 87, 2090–2096. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Aagaard, P.; Dyhre-Poulsen, P.; Kjaer, M. Load-displacement properties of the human triceps surae aponeurosis in vivo. J. Physiol. 2001, 531, 277–288. [Google Scholar] [CrossRef]
- Kubo, K.; Kawakami, Y.; Kanehisa, H.; Fukunaga, T. Measurement of viscoelastic properties of tendon structures in vivo. Scand. J. Med. Sci. Sports 2002, 12, 3–8. [Google Scholar] [CrossRef]
- Herbert, R.D.; Moseley, A.M.; Butler, J.E.; Gandevia, S.C. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J. Physiol. 2002, 539, 637–645. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Fukunaga, T. Effects of transient muscle contractions and stretching on the tendon structures in vivo. Acta Physiol. Scand. 2002, 175, 157–164. [Google Scholar] [CrossRef]
- Maganaris, C.N. Force-length characteristics of the in vivo human gastrocnemius muscle. Clin. Anat. 2003, 16, 215–223. [Google Scholar] [CrossRef]
- Morse, C.I.; Degens, H.; Seynnes, O.R.; Maganaris, C.N.; Jones, D.A. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J. Physiol. 2008, 586, 97–106. [Google Scholar] [CrossRef]
- Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J. In vivo measurements of the triceps surae complex architecture in man: Implications for muscle function. J. Physiol. 1998, 512 Pt 2, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.L.; Kim, B.D.H.; Bourcet, M.R.; Jones, G.R.; Jakobi, J.M. Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scand. J. Med. Sci. Sports 2017, 27, 1597–1604. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mil-Homens, P. Effect of 8-week high-intensity stretching training on biceps femoris architecture. J. Strength Cond. Res. 2015, 29, 1737–1740. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Fukunaga, T. Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2002, 92, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guissard, N.; Duchateau, J.; Hainaut, K. Muscle stretching and motoneuron excitability. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 58, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Avela, J.; Kyrolainen, H.; Komi, P.V. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 1999, 86, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Sato, S.; Hiraizumi, K.; Kiyono, R.; Fukaya, T.; Nishishita, S. Effects of static stretching programs performed at different volume-equated weekly frequencies on passive properties of muscle-tendon unit. J. Biomech. 2020, 103, 109670. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Fukashiro, S.; Itoh, M.; Ichinose, Y.; Kawakami, Y.; Fukunaga, T. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 555–557. [Google Scholar] [CrossRef]
- Ito, M.; Kawakami, Y.; Ichinose, Y.; Fukashiro, S.; Fukunaga, T. Nonisometric behavior of fascicles during isometric contractions of a human muscle. J. Appl. Physiol. 1998, 85, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Narici, M.V.; Binzoni, T.; Hiltbrand, E.; Fasel, J.; Terrier, F.; Cerretelli, P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J. Physiol. 1996, 496 Pt 1, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Abellaneda, S.; Guissard, N.; Duchateau, J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J. Appl. Physiol. 2009, 106, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.D.; Narici, M.V. Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J. Appl. Physiol. 2003, 95, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Grieve, D.W.; Pheasant, S.; Cavanagh, P.R. Prediction of gastrocnemius length from knee and ankle joint posture. Biomechanics 1978, 2, 405–412. [Google Scholar]
- Blazevich, A.J. Adaptations in the passive mechanical properties of skeletal muscle to altered patterns of use. J. Appl. Physiol. 2019, 126, 1483–1491. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Simonsen, E.B.; Aagaard, P.; Sorensen, H.; Kjaer, M. A mechanism for altered flexibility in human skeletal muscle. J. Physiol. 1996, 497 Pt 1, 291–298. [Google Scholar] [CrossRef]
- Law, R.Y.; Harvey, L.A.; Nicholas, M.K.; Tonkin, L.; De Sousa, M.; Finniss, D.G. Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: A randomized controlled trial. Phys. Ther. 2009, 89, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazevich, A.J.; Cannavan, D.; Waugh, C.M.; Miller, S.C.; Thorlund, J.B.; Aagaard, P.; Kay, A.D. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans. J. Appl. Physiol. 2014, 117, 452–462. [Google Scholar] [CrossRef]
- Nakamura, M.; Ikezoe, T.; Umegaki, H.; Kobayashi, T.; Nishishita, S.; Ichihashi, N. Changes in Passive Properties of the Gastrocnemius Muscle-Tendon Unit During a 4-Week Routine Static-Stretching Program. J. Sport Rehabil. 2017, 26, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Behm, D.G.; Negra, Y.; Granacher, U. Acute Effects of Static Stretching on Muscle Strength and Power: An Attempt to Clarify Previous Caveats. Front. Physiol. 2019, 10, 1468. [Google Scholar] [CrossRef]
- Konrad, A.; Tilp, M. Increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clin. Biomech. (Bristol. Avon.) 2014, 29, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Guissard, N.; Duchateau, J. Effect of static stretch training on neural and mechanical properties of the human plantar-flexor muscles. Muscle Nerve 2004, 29, 248–255. [Google Scholar] [CrossRef]
- Nakamura, M.; Ikezoe, T.; Takeno, Y.; Ichihashi, N. Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo. Eur. J. Appl. Physiol. 2012, 112, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Levenez, M.; Theunissen, S.; Bottero, A.; Snoeck, T.; Bruyere, A.; Tinlot, A.; Balestra, C.; Provyn, S. The effect of a passive stretch training protocol on performance during a drop jump in humans. J. Sports Med. Phys. Fitness 2013, 53, 319–326. [Google Scholar] [PubMed]
- McNair, P.J.; Dombroski, E.W.; Hewson, D.J.; Stanley, S.N. Stretching at the ankle joint: Viscoelastic responses to holds and continuous passive motion. Med. Sci. Sports Exerc. 2001, 33, 354–358. [Google Scholar] [CrossRef]
- Sinkjaer, T.; Toft, E.; Andreassen, S.; Hornemann, B.C. Muscle stiffness in human ankle dorsiflexors: Intrinsic and reflex components. J. Neurophysiol. 1988, 60, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T. Combined Static Stretching and Electrical Muscle Stimulation Induce Greater Changes in Range of Motion, Passive Torque, and Tendon Displacement Compared with Static Stretching. Sports 2023, 11, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lévenéz, M.; Moeremans, M.; Booghs, C.; Vigouroux, F.; Leveque, C.; Hemelryck, W.; Balestra, C. Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports 2023, 11, 73. https://doi.org/10.3390/sports11040073
Lévenéz M, Moeremans M, Booghs C, Vigouroux F, Leveque C, Hemelryck W, Balestra C. Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports. 2023; 11(4):73. https://doi.org/10.3390/sports11040073
Chicago/Turabian StyleLévenéz, Morgan, Matthieu Moeremans, Cédric Booghs, Florent Vigouroux, Clément Leveque, Walter Hemelryck, and Costantino Balestra. 2023. "Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults" Sports 11, no. 4: 73. https://doi.org/10.3390/sports11040073
APA StyleLévenéz, M., Moeremans, M., Booghs, C., Vigouroux, F., Leveque, C., Hemelryck, W., & Balestra, C. (2023). Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports, 11(4), 73. https://doi.org/10.3390/sports11040073