CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Eligibility
2.3. Search Strategy
2.4. Data Items and Collection Process
3. Results
3.1. Study Search
3.2. Performance Prediction and Enhancement
4. Discussion
4.1. Key Findings
4.2. Recommendations and Strategies
4.3. Application in Tactical Populations
4.4. Future Directions
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CrossFit. Official CrossFit Affiliate Map. Available online: https://map.crossfit.com/ (accessed on 25 April 2022).
- Kercher, V.M.; Kercher, K.; Bennion, T.; Levy, P.; Alexander, C.; Amaral, P.C.; Li, Y.-M.; Han, J.; Liu, Y.; Wang, R.; et al. 2022 Fitness Trends from Around the Globe. ACSM’s Health Fit. J. 2022, 26, 21–37. [Google Scholar] [CrossRef]
- Brandt, T.; Schinköthe, T.; Schmidt, A. CrossFit Motivates a 41-Year-Old Obese Man to Change His Lifestyle and Achieve Long-Term Health Improvements: A Case Report. J. Funct. Morphol. Kinesiol. 2023, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Carlisle, T.; Kehler, A.; Cosgrove, S.J. Mapping coaches’ views of participation in CrossFit to the integrated theory of health behavior change and sense of community. Fam. Community Health 2017, 40, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.; Sergent, A. Improved Performance After Gluteus Complex Activation in a CrossFit Athlete Presenting with Knee Pain. J. Chiropr. Med. 2019, 18, 343–347. [Google Scholar] [CrossRef]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic Review and Meta-analysis. Sports Med.-Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Jacob, N.; Novaes, J.S.; Behm, D.G.; Vieira, J.G.; Dias, M.R.; Vianna, J.M. Characterization of hormonal, metabolic, and inflammatory responses in CrossFit® training: A systematic review. Front. Physiol. 2020, 11, 1001. [Google Scholar] [CrossRef]
- Meier, N.; Schlie, J.; Schmidt, A. Physiological Effects of Regular CrossFit® Training and the Impact of the COVID-19 Pandemic—A Systematic Review. Front. Physiol. 2023, 14, 1146718. [Google Scholar] [CrossRef]
- Schlegel, P. CrossFit® training strategies from the perspective of concurrent training: A systematic review. J. Sports Sci. Med. 2020, 19, 670–680. [Google Scholar]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef]
- Wagener, S.; Hoppe, M.W.; Hotfiel, T.; Engelhardt, M.; Javanmardi, S.; Baumgart, C.; Freiwald, J. CrossFit®—Development, benefits and risks. Sports Orthop. Traumatol. 2020, 36, 241–249. [Google Scholar] [CrossRef]
- De Souza, R.A.S.; Da Silva, A.G.; De Souza, M.F.; Souza, L.K.F.; Roschel, H.; Da Silva, S.F.; Saunders, B. A systematic review of CrossFit® workouts and dietary and supplementation interventions to guide nutritional strategies and future research in CrossFit®. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 187–205. [Google Scholar] [CrossRef]
- Dos Santos Quaresma, M.V.; Marques, C.G.; Nakamoto, F.P. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: A systematic review of clinical studies. Nutrition 2021, 82, 110994. [Google Scholar] [CrossRef]
- Dominski, F.H.; Matias, T.S.; Serafim, T.T.; Feito, Y. Motivation to CrossFit training: A narrative review. Sport Sci. Health 2020, 16, 195–206. [Google Scholar] [CrossRef]
- Dominski, F.H.; Serafim, T.T.; Siqueira, T.C.; Andrade, A. Psychological variables of CrossFit participants: A systematic review. Sport Sci. Health 2021, 17, 21–41. [Google Scholar] [CrossRef]
- Dawson, M.C. CrossFit: Fitness cult or reinventive institution? Int. Rev. Sociol. Sport 2017, 52, 361–379. [Google Scholar] [CrossRef]
- Davies, M.J.; Coleman, L.; Babkes Stellino, M. The relationship between basic psychological need satisfaction, behavioral regulation, and participation in CrossFit. J. Sport Behav. 2016, 39, 239–254. [Google Scholar]
- Ryan Shuda, M.; Feito, Y. Challenge, commitment, community, and empowerment: Factors that promote the adoption of CrossFit as a training program. Transformation 2017, 1, 1–14. [Google Scholar]
- Nicolay, R.W.; Moore, L.K.; DeSena, T.D.; Dines, J.S. Upper Extremity Injuries in CrossFit Athletes—A Review of the Current Literature. Curr. Rev. Musculoskelet. Med. 2022, 15, 402–410. [Google Scholar] [CrossRef]
- Poston, W.S.; Haddock, C.K.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N.; Batchelor, D.B. Is high-intensity functional training (HIFT)/CrossFit safe for military fitness training? Mil. Med. 2016, 181, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Klimek, C.; Ashbeck, C.; Brook, A.J.; Durall, C. Are injuries more common with CrossFit training than other forms of exercise? J. Sport Rehabil. 2018, 27, 295–299. [Google Scholar] [CrossRef]
- Mehrab, M.; Wagner, R.K.; Vuurberg, G.; Gouttebarge, V.; De Vos, R.-J.; Mathijssen, N.M.C. Risk factors for musculoskeletal injury in CrossFit: A systematic review. Int. J. Sports Med. 2023, 44, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, B.; Devereux, G.; Beato, M. Injury risk and injury incidence rates in CrossFit. J. Sports Med. Phys. Fit. 2020, 60, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Ángel Rodríguez, M.; García-Calleja, P.; Terrados, N.; Crespo, I.; Del Valle, M.; Olmedillas, H. Injury in CrossFit®: A systematic review of epidemiology and risk factors. Physician Sportsmed. 2022, 50, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.; Grandou, C.; Coutts, A.J.; Wallace, L. The Effects of High-Intensity Multimodal Training in Apparently Healthy Populations: A Systematic Review. Sports Med.-Open 2022, 8, 43. [Google Scholar] [CrossRef]
- Glassman, G. The CrossFit Training Guide. CrossFit J. 2010, 9, 1–115. [Google Scholar]
- Brandt, T.; Schmidt, A.; Schinköthe, T.; Heinz, E.; Klaaßen, Y.; Limbara, S.; Mörsdorf, M. MedXFit—Effects of 6 months CrossFit® in sedentary and inactive employees: A prospective, controlled, longitudinal, intervention study. Health Sci. Rep. 2022, 5, e749. [Google Scholar] [CrossRef]
- Glassman, G. What is CrossFit? CrossFit J. 2004, 19, 1–7. [Google Scholar]
- Glassman, G. Benchmark workouts. CrossFit J. 2003, 13, 1–5. [Google Scholar]
- Musselman, C. Training for the “Unknown and Unknowable”: CrossFit and Evangelical Temporality. Religions 2019, 10, 624. [Google Scholar] [CrossRef]
- Kliszczewicz, B.; Snarr, R.; Esco, M. Metabolic and cardiovascular response to the CrossFit workout ‘Cindy’: A pilot study. J. Sport Hum. Perform. 2014, 2, 1–9. [Google Scholar]
- Fernández, J.F.; Solana, R.S.; Moya, D.; Marin, J.M.S.; Ramón, M.M. Acute physiological responses during crossfit® workouts. Eur. J. Hum. Mov. 2015, 35, 114–124. [Google Scholar]
- Maté-Muñoz, J.L.; Lougedo, J.H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M.V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PLoS ONE 2017, 12, e0181855. [Google Scholar] [CrossRef]
- Tibana, R.A.; De Sousa, N.M.F.; Prestes, J.; Voltarelli, F.A. Lactate, heart rate and rating of perceived exertion responses to shorter and longer duration CrossFit® training sessions. J. Funct. Morphol. Kinesiol. 2018, 3, 60. [Google Scholar] [CrossRef]
- Meier, N.; Sietmann, D.; Schmidt, A. Comparison of Cardiovascular Parameters and Internal Training Load of Different 1-h Training Sessions in Non-elite CrossFit® Athletes. J. Sci. Sport Exerc. 2023, 5, 130–141. [Google Scholar] [CrossRef]
- Carreker, J.D.D.; Grosicki, G.J. Physiological predictors of performance on the CrossFit “Murph” challenge. Sports 2020, 8, 92. [Google Scholar] [CrossRef]
- CrossFit. The CrossFit Games Competition Rule Book. Available online: https://www.crossfit.com/wp-content/uploads/2021/11/17141604/2022_CrossFitGames_Rulebook_V15.pdf (accessed on 25 April 2022).
- CrossFit. CrossFit—About the Games. Available online: https://games.crossfit.com/about-the-games (accessed on 25 April 2022).
- Mangine, G.T.; McDougle, J.M. CrossFit® open performance is affected by the nature of past competition experiences. BMC Sports Sci. Med. Rehabil. 2022, 14, 46. [Google Scholar] [CrossRef]
- Mangine, G.T.; Grundlingh, N.; Feito, Y. Normative Scores for CrossFit® Open Workouts: 2011–2022. Sports 2023, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, W. Is the CrossFit Open the Biggest Sporting Competition on Earth? Available online: https://edition.cnn.com/2018/02/19/sport/crossfit-open-biggest-competition-on-earth/index.html (accessed on 25 April 2022).
- CrossFit. CrossFit Open. Available online: https://games.crossfit.com/open (accessed on 25 April 2022).
- Bradbury, J.C. Peak athletic performance and ageing: Evidence from baseball. J. Sports Sci. 2009, 27, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Pitts, J.D.; Evans, B. Drafting for Success: How Good Are NFL Teams at Identifying Future Productivity at Offensive-Skill Positions in the Draft? Am. Econ. 2019, 64, 102–122. [Google Scholar] [CrossRef]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; De Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject groups in sport-science research. Int. J. Sports Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Stern, C.; Jordan, Z.; McArthur, A. Developing the review question and inclusion criteria. Am. J. Nurs. 2014, 114, 53–56. [Google Scholar] [CrossRef]
- Mangine, G.T.; Feito, Y.; Tankersley, J.E.; McDougle, J.M.; Kliszczewicz, B.M. Workout Pacing Predictors of Crossfit Open Performance: A Pilot Study. J. Hum. Kinet. 2021, 78, 89–100. [Google Scholar] [CrossRef]
- Mangine, G.T.; Tankersley, J.E.; McDougle, J.M.; Velazquez, N.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Predictors of CrossFit open performance. Sports 2020, 8, 102. [Google Scholar] [CrossRef]
- Meier, N.; Rabel, S.; Schmidt, A. Determination of a CrossFit® Benchmark Performance Profile. Sports 2021, 9, 80. [Google Scholar] [CrossRef]
- Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological predictors of competition performance in CrossFit athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef]
- Peña, J.; Moreno-Doutres, D.; Peña, I.; Chulvi-Medrano, I.; Ortegón, A.; Aguilera-Castells, J.; Buscà, B. Predicting the Unknown and the Unknowable. Are Anthropometric Measures and Fitness Profile Associated with the Outcome of a Simulated CrossFit® Competition? Int. J. Environ. Res. Public Health 2021, 18, 3692. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological performance measures as indicators of crossfit® performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Torrence, W.A. Total Body Strength Predicts Workout Performance in a Competitive Fitness Weightlifting Workout. J. Exerc. Physiol. Online 2020, 23, 95–104. [Google Scholar]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-squat as a determinant of performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef]
- Zeitz, E.K.; Cook, L.F.; Dexheimer, J.D.; Lemez, S.; Leyva, W.D.; Terbio, I.Y.; Tran, J.R.; Jo, E. The relationship between crossfit® performance and laboratory-based measurements of fitness. Sports 2020, 8, 112. [Google Scholar] [CrossRef]
- Tibana, R.A.; de Sousa Neto, I.V.; Sousa, N.M.F.d.; Romeiro, C.; Hanai, A.; Brandão, H.; Dominski, F.H.; Voltarelli, F.A. Local Muscle Endurance and Strength Had Strong Relationship with CrossFit® Open 2020 in Amateur Athletes. Sports 2021, 9, 98. [Google Scholar] [CrossRef]
- Leitão, L.; Dias, M.; Campos, Y.; Vieira, J.G.; Sant’Ana, L.; Telles, L.G.; Tavares, C.; Mazini, M.; Novaes, J.; Vianna, J. Physical and Physiological Predictors of FRAN CrossFit® WOD Athlete’s Performance. Int. J. Environ. Res. Public Health 2021, 18, 4070. [Google Scholar] [CrossRef]
- Barbieri, J.F.; Correia, R.F.; Castaño, L.A.A.; Brasil, D.V.C.; Ribeiro, A.N. Comparative and correlational analysis of the performance from 2016 crossfit games high-level athletes. Man. Ther. Posturology Rehabil. J. 2017, 15, 521. [Google Scholar] [CrossRef]
- Gómez-Landero, L.A.; Frías-Menacho, J.M. Analysis of Morphofunctional Variables Associated with Performance in Crossfit Competitors. J. Hum. Kinet. 2020, 73, 83–91. [Google Scholar] [CrossRef]
- Cavedon, V.; Milanese, C.; Marchi, A.; Zancanaro, C. Different amount of training affects body composition and performance in High-Intensity Functional Training participants. PLoS ONE 2020, 15, e0237887. [Google Scholar] [CrossRef]
- Schlegel, P.; Režný, L.; Fialová, D. Pilot study: Performance-ranking relationship analysis in Czech crossfiters. J. Hum. Sport Exerc. 2021, 16, 187–198. [Google Scholar] [CrossRef]
- Klier, K.; Dörr, S.; Schmidt, A. High sleep quality can increase the performance of CrossFit® athletes in highly technical-and cognitive-demanding categories. BMC Sports Sci. Med. Rehabil. 2021, 13, 137. [Google Scholar] [CrossRef]
- de Waal, S.J.; Gomez-Ezeiza, J.; Venter, R.E.; Lamberts, R.P. Physiological indicators of trail running performance: A systematic review. Int. J. Sports Physiol. Perform. 2021, 16, 325–332. [Google Scholar] [CrossRef]
- Sánchez Moreno, M.; Pareja Blanco, F.; González Badillo, J.J.; Díaz Cueli, D. Determinant factors of pull up performance in trainedathletes. J. Sports Med. Phys. Fit. 2016, 56, 825–833. [Google Scholar]
- Millet, G.P.; Vleck, V.E.; Bentley, D.J. Physiological requirements in triathlon. J. Hum. Sport Exerc. 2011, 6, 184–204. [Google Scholar] [CrossRef]
- Van Schuylenbergh, R.; Eynde, B.V.; Hespel, P. Prediction of sprint triathlon performance from laboratory tests. Eur. J. Appl. Physiol. 2004, 91, 94–99. [Google Scholar] [CrossRef]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar]
- Ince, I.; Ulupinar, S. Prediction of competition performance via selected strength-power tests in junior weightlifters. J. Sports Med. Phys. Fit. 2020, 60, 236–243. [Google Scholar] [CrossRef]
- Etxebarria, N.; Wright, J.; Jeacocke, H.; Mesquida, C.; Pyne, D.B. Running your best triathlon race. Int. J. Sports Physiol. Perform. 2021, 16, 744–747. [Google Scholar] [CrossRef]
- Rüst, C.A.; Knechtle, B.; Wirth, A.; Knechtle, P.; Ellenrieder, B.; Rosemann, T.; Lepers, R. Personal best times in an Olympic distance triathlon and a marathon predict an Ironman race time for recreational female triathletes. Chin. J. Physiol. 2012, 55, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Ermanno, R.; Bangsbo, J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef]
- Mallol, M.; Bentley, D.J.; Norton, L.; Norton, K.; Mejuto, G.; Yanci, J. Comparison of reduced-volume high-intensity interval training and high-volume training on endurance performance in triathletes. Int. J. Sports Physiol. Perform. 2019, 14, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Atakan, M.M.; Güzel, Y.; Bulut, S.; Koşar, Ş.N.; McConell, G.K.; Turnagöl, H.H. Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks. J. Sport Health Sci. 2021, 10, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Ní Chéilleachair, N.J.; Harrison, A.J.; Warrington, G.D. HIIT enhances endurance performance and aerobic characteristics more than high-volume training in trained rowers. J. Sports Sci. 2017, 35, 1052–1058. [Google Scholar] [CrossRef]
- Leyk, D.; Witzki, A.; Gorges, W.; Rohde, U.; Lison, A.; Rondé, M.; Wömpener, H.; Schlattmann, A.; Dobmeier, H.; Rüther, T. Körperliche Leistungsfähigkeit, Körpermaße und Risikofaktoren von 18-bis 35-jährigen Soldaten: Ergebnisse der Evaluierungsstudie zum Basis-Fitness-Test (BFT). Wehrmed. Mon. 2010, 54, 278–282. [Google Scholar]
- Bigelman, K.A.; East, W.B.; Thomas, D.M.; Turner, D.; Hertling, M. The new Army Combat Fitness Test: An opportunity to improve recruitment and retainment. Obesity 2019, 27, 1772–1775. [Google Scholar] [CrossRef]
- Malcata, R.M.; Hopkins, W.G. Variability of competitive performance of elite athletes: A systematic review. Sports Med. 2014, 44, 1763–1774. [Google Scholar] [CrossRef]
- Knechtle, B.; Wirth, A.; Baumann, B.; Knechtle, P.; Rosemann, T.; Oliver, S. Differential correlations between anthropometry, training volume, and performance in male and female Ironman triathletes. J. Strength Cond. Res. 2010, 24, 2785–2793. [Google Scholar] [CrossRef]
Reference | Data Collection | Sample (Gender) | Predictor | Predicted Performance | R-Squared (R2) or Correlation Coefficient a (r) |
---|---|---|---|---|---|
Mangine et al., 2021 [50] | Experimental data | 11 CrossFit® Open competitors (male = 5; female = 6) | Average round rate of a workout with multiple rounds (reps·s−1) | 2016 CrossFit® Open 16.2 | R2 = 0.99 |
2016 CrossFit® Open 16.5 | R2 = 0.94 | ||||
2016 CrossFit® Open 16.1 | R2 = 0.89 | ||||
Slowest round rate of a workout with multiple rounds (reps·s−1) | 2016 CrossFit® Open 16.3 | R2 = 0.94 | |||
Wall ball completion rate of a one round workout (reps·s−1) | 2016 CrossFit® Open 16.4 | R2 = 0.89 | |||
Mangine et al., 2020 [51] | Experimental data | 16 experienced (>2 years) athletes (male = 8; female = 8) | Body fat percentage (%) | 2018 CrossFit® Open 18.1 | R2 = 0.89 |
2018 CrossFit® Open 18.3 | R2 = 0.62 | ||||
2018 CrossFit® Open 18.2a | R2 = 0.55 | ||||
Body density (kg·L−1) | 2018 CrossFit® Open 18.4 | R2 = 0.77 | |||
2018 CrossFit® Open 18.5 | R2 = 0.67 | ||||
Vastus lateralis cross-sectional area (cm−1) | 2018 CrossFit® Open 18.2b | R2 = 0.78 | |||
Meier et al., 2021 [52] | Reported data by questionnaire | 162 CrossFit® athletes (male = 66; female = 96) | Back squat (kg) | Clean and Jerk | R2 = 0.84 |
Snatch | R2 = 0.76 | ||||
Martínez-Gómez et al., 2020 [53] | Experimental data | 15 male amateur CrossFit® athletes | RSI (cm·ms−1), SJ (cm), and VO2max (ml·kg−1·min−1) | Performance of the 2019 CrossFit® Open b | R2 = 0.81 |
Bellar et al., 2015 [54] | Experimental data | 32 male CrossFit® athletes | Age (years), CrossFit® experience, WanT (watt), and VO2max (ml·kg−1·min−1) | AMRAP workout (12 min) | R2 = 0.80 |
CrossFit® experience | FT workout (21-15-9) | R2 = 0.59 | |||
Butcher et al., 2015 [55] | Experimental data | 14 experienced CrossFit® athletes (male = 10; female = 4) | Total body strength (CrossFit® Total in kg) | Grace | R2 = 0.77 |
Fran | R2 = 0.42 | ||||
Peña et al., 2021 [56] | Experimental data | 10 experienced male CrossFit® athletes | SJ (cm), CMJ (cm), RSI (cm·ms−1), snatch (kg), bench press (kg), and back squat (kg) | Simulated CrossFit® competition with three benchmark workouts (Fran, Isabel, and Kelly) | R2 = 0.75 |
Feito et al., 2019 [57] | Experimental data | 29 physical-active (advanced level trained) adults (male = 15; female = 14) | Repeated WanT performance | AMRAP workout (15 min) | R2 = 0.74 |
Dexheimer et al., 2019 [58] | Experimental data | 17 experienced CrossFit® athletes (male = 12; female = 5) | VO2max (ml·kg−1·min−1) | Nancy | R2 = 0.68 |
WanT (watt) | CrossFit® Total | R2 = 0.57 | |||
Back squat (kg) | Fran | R2 = 0.42 | |||
Dexheimer et al., 2020 [59] | Experimental data | 17 trained males | Total body strength (CrossFit® Total in kg) | Grace | R2 = 0.62 |
Martínez-Gómez et al., 2019 [60] | Experimental data | 20 trained males | Back squat (% of body mass) | Performance of the CrossFit® Open 2017 b | R2 = 0.42 |
Back squat (kg) | R2 = 0.38 | ||||
Zeitz et al., 2020 [61] | Experimental data | 22 trained participants (male = 13; female = 9) | VO2max (ml·kg−1·min−1) | 2019 CrossFit® Open 19.1 (scaled) | R2 = 0.39 |
Total body strength (CrossFit® Total in kg) | Fran (modified) | R2 = 0.33 | |||
Tibana et al., 2021 [62] | Experimental data | 17 experienced CrossFit® athletes (male = 11; female = 6) | Tibana test (reps) | 2020 CrossFit® Open 20.5 | r = −0.89 (r = −0.63) c |
2020 CrossFit® Open 20.2 | r = 0.83 (r = 0.98) c | ||||
2020 CrossFit® Open 20.3 | r = 0.74 (r = 0.71 n.s.) c | ||||
2020 CrossFit® Open 20.1 | r = −0.73 (r = −0.96) c | ||||
2020 CrossFit® Open 20.4 | r = 0.51 n.s. (r = 0.84) c | ||||
Leitão et al., 2021 [63] | Experimental data | 15 male CrossFit® amateur athletes | Maximum reps of thrusters | Fran | r = −0.82 |
2000 m row (s) | r = 0.67 | ||||
Thrusters (kg) | r = −0.61 | ||||
Maximum reps of pull-ups | r = −0.60 | ||||
Barbieri et al., 2017 [64] | Use of public data | 80 CrossFit® Games 2016 finalist (male = 40; female = 40) | Fithy 50 (s) | Ranking in the CrossFit® Games 2016 | r = 0.77 |
400 m sprint (s) | r = 0.69 | ||||
Snatch (kg) | r = −0.42 | ||||
Clean and Jerk (kg) | r = −0.39 | ||||
Carreker et al., 2020 [37] | Experimental data | 11 male experienced CrossFit® athletes | Body fat percentage (%) | Murph | r = 0.72 |
Gómez-Landero et al., 2020 [65] | Experimental data | 15 male CrossFit® competitors | VO2max (ml·kg−1·min−1) | Donkey Kong | r = −0.68 |
Suprailiac skinfold | r = 0.71 | ||||
Sit-ups (reps) | r = −0.56 | ||||
Squat (kg) | Fran | r = −0.53 | |||
Cavedon et al., 2020 [66] | Experimental data | 24 male CrossFit® athletes | Appendicular LSTMI (kg/m2) | Fran | r = −0.65 |
Amount of training (h/week) | r = −0.66 | ||||
Schlegel et al., 2021 [67] | Reported data by questionnaire | Twenty best male Czechs in the CrossFit® Open 2019 ranking | Snatch (kg) | Ranking in the CrossFit® Open 2019 | r = −0.61 |
Clean and Jerk (kg) | r = −0.63 | ||||
Mangine et al., 2022 [40] | Recorded data from publicly available online profile | 220 randomly selected males from the top 1000 CFO 2020 athletes | Highest previous CrossFit® Open rank | Overall and weekly ranking of the 2020 CrossFit® Open | r = 0.26 to 0.39 |
Individual regional appearances | r = −0.26 to −0.34 | ||||
Individual CrossFit® Games appearances | r = −0.20 to −0.22 | ||||
Klier et al., 2021 [68] | Reported data by online survey | 149 CrossFit® athletes (male = 68; female = 81) | Sleep quality by the Pittsburgh Sleep Quality Index (PSQI) | Hero-/Girl-Workouts | - |
Gymnastics | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, N.; Schlie, J.; Schmidt, A. CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance. Sports 2023, 11, 112. https://doi.org/10.3390/sports11060112
Meier N, Schlie J, Schmidt A. CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance. Sports. 2023; 11(6):112. https://doi.org/10.3390/sports11060112
Chicago/Turabian StyleMeier, Nicole, Jennifer Schlie, and Annette Schmidt. 2023. "CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance" Sports 11, no. 6: 112. https://doi.org/10.3390/sports11060112
APA StyleMeier, N., Schlie, J., & Schmidt, A. (2023). CrossFit®: ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit® Performance. Sports, 11(6), 112. https://doi.org/10.3390/sports11060112