Acute Effects of Supra- and High-Loaded Front Squats on Mechanical Properties of Lower-Limb Muscles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Familiarization Session
2.4. Experimental Session
2.5. Muscle Mechanical Property Assessment
2.6. Statistical Analysis
3. Results
3.1. Vastus Lateralis
3.2. Biceps Femoris
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krzysztofik, M.; Wilk, M.; Golas, A.; Lockie, R.G.; Maszczyk, A.; Zajac, A. Does Eccentric-Only and Concentric-Only Activation Increase Power Output? Med. Sci. Sports Exerc. 2020, 52, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Ruas, C.V.; Latella, C.; Taylor, J.L.; Haff, G.G.; Nosaka, K. Early Detection of Prolonged Decreases in Maximal Voluntary Contraction Force after Eccentric Exercise of the Knee Extensors. Med. Sci. Sports Exerc. 2022, 54, 267–279. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Lockie, R.G.; Golas, A.; Zajac, A.; Bogdanis, G.C. Postactivation Performance Enhancement of Concentric Bench Press Throw After Eccentric-Only Conditioning Exercise. J. Strength Cond. Res. 2022, 36, 2077–2081. [Google Scholar] [CrossRef]
- Ulrich, G.; Parstorfer, M. Effects of Plyometric Versus Concentric and Eccentric Conditioning Contractions on Upper-Body Postactivation Potentiation. Int. J. Sports Physiol. Perform. 2017, 12, 736–741. [Google Scholar] [CrossRef]
- Ong, J.H.; Lim, J.; Chong, E.; Tan, F. The Effects of Eccentric Conditioning Stimuli on Subsequent Counter-Movement Jump Performance. J. Strength Cond. Res. 2016, 30, 747–754. [Google Scholar] [CrossRef]
- Hoppeler, H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossen, E.R.; Sale, D.G. Effect of Postactivation Potentiation on Dynamic Knee Extension Performance. Eur. J. Appl. Physiol. 2000, 83, 524–530. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P.; Tsolakis, C.; Terzis, G. Effects of Muscle Action Type with Equal Impulse of Conditioning Activity on Postactivation Potentiation. J. Strength Cond. Res. 2014, 28, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Kablan, N.; Alaca, N.; Tatar, Y. Comparison of the Immediate Effect of Petrissage Massage and Manual Lymph Drainage Following Exercise on Biomechanical and Viscoelastic Properties of the Rectus Femoris Muscle in Women. J. Sport Rehabil. 2021, 30, 725–730. [Google Scholar] [CrossRef]
- Korhonen, R.K.; Vain, A.; Vanninen, E.; Viir, R.; Jurvelin, J.S. Can Mechanical Myotonometry or Electromyography Be Used for the Prediction of Intramuscular Pressure? Physiol. Meas. 2005, 26, 951–963. [Google Scholar] [CrossRef]
- Sejersted, O.M.; Hargens, A.R.; Kardel, K.R.; Blom, P.; Jensen, O.; Hermansen, L. Intramuscular Fluid Pressure during Isometric Contraction of Human Skeletal Muscle. J. Appl. Physiol. 1984, 56, 287–295. [Google Scholar] [CrossRef]
- Sleboda, D.A.; Roberts, T.J. Internal Fluid Pressure Influences Muscle Contractile Force. Proc. Natl. Acad. Sci. USA 2020, 117, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Klich, S.; Ficek, K.; Krymski, I.; Klimek, A.; Kawczyński, A.; Madeleine, P.; Fernández-de-las-Peñas, C. Quadriceps and Patellar Tendon Thickness and Stiffness in Elite Track Cyclists: An Ultrasonographic and Myotonometric Evaluation. Front. Physiol. 2020, 11, 607208. [Google Scholar] [CrossRef] [PubMed]
- Trybulski, R.; Wojdała, G.; Alexe, D.I.; Komarek, Z.; Aschenbrenner, P.; Wilk, M.; Zając, A.; Krzysztofik, M. Acute Effects of Different Intensities during Bench Press Exercise on the Mechanical Properties of Triceps Brachii Long Head. Appl. Sci. 2022, 12, 3197. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Pisz, A.; Kolinger, D.; Tsoukos, A.; Zając, A.; Stastny, P.; Bogdanis, G.C. Acute Effects of Varied Back Squat Activation Protocols on Muscle-Tendon Stiffness and Jumping Performance. J. Strength Cond. Res. 2023, 37, 1419–1427. [Google Scholar] [CrossRef]
- Friden, J.; Sfakianos, P.N.; Hargens, A.R. Muscle Soreness and Intramuscular Fluid Pressure: Comparison between Eccentric and Concentric Load. J. Appl. Physiol. 1986, 61, 2175–2179. [Google Scholar] [CrossRef]
- Wang, D.; De Vito, G.; Ditroilo, M.; Delahunt, E. Different Effect of Local and General Fatigue on Knee Joint Stiffness. Med. Sci. Sports Exerc. 2017, 49, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M. Recovery after Exercise: What Is the Current State of Play? Curr. Opin. Physiol. 2019, 10, 17–26. [Google Scholar] [CrossRef]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing Post Activation Potentiation for Explosive Activities in Competitive Sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liang, M.; Lin, J.; Zhou, R.; Zhao, N.; Aidar, F.J.; Oliveira, R.; Badicu, G. Time Duration of Post-Activation Performance Enhancement (PAPE) in Elite Male Sprinters with Different Strength Levels. Children 2022, 10, 53. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Spieszny, M.; Trybulski, R.; Wilk, M.; Pisz, A.; Kolinger, D.; Filip-Stachnik, A.; Stastny, P. Acute Effects of Isometric Conditioning Activity on the Viscoelastic Properties of Muscles and Sprint and Jumping Performance in Handball Players. J. Strength Cond. Res. 2023, 37, 1486–1494. [Google Scholar] [CrossRef]
- Gapeyeva, H.; Vain, A. Methodical Guide: Principles of Applying Myoton in Physical Medicine and Rehabilitation; Muomeetria: Tartu, Estonia, 2008. [Google Scholar]
- Bizzini, M.; Mannion, A.F. Reliability of a New, Hand-Held Device for Assessing Skeletal Muscle Stiffness. Clin. Biomech. 2003, 18, 459–461. [Google Scholar] [CrossRef]
- Pruyn, E.C.; Watsford, M.L.; Murphy, A.J. Validity and Reliability of Three Methods of Stiffness Assessment. J. Sport Health Sci. 2016, 5, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wu, J.; Chen, G.; Lu, Y.; Ren, W.; Xu, W.; Xu, X.; Wu, Z.; Guan, Y.; Zheng, Y.; et al. Reliability of a Portable Device for Quantifying Tone and Stiffness of Quadriceps Femoris and Patellar Tendon at Different Knee Flexion Angles. PLoS ONE 2019, 14, e0220521. [Google Scholar] [CrossRef] [Green Version]
- Ditroilo, M.; Hunter, A.M.; Haslam, S.; De Vito, G. The Effectiveness of Two Novel Techniques in Establishing the Mechanical and Contractile Responses of Biceps Femoris. Physiol. Meas. 2011, 32, 1315–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Lin, L.; Liang, H.; Lin, M.; Deng, W.; Zhan, X.; Fu, X.; Liu, C. Gender Difference in Effects of Proprioceptive Neuromuscular Facilitation Stretching on Flexibility and Stiffness of Hamstring Muscle. Front. Physiol. 2022, 13, 918176. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.J.; Walters, S.J.K.; Machin, D. Medical Statistics: A Textbook for the Health Sciences, 5th ed.; John Wiley Blackwell: Hoboken, NJ, USA, 2021; ISBN 978-1-119-42364-5. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Elsevier Science: Burlington, NJ, USA, 2013; ISBN 978-1-4832-7648-9. [Google Scholar]
- Hill, M.; Rosicka, K.; Wdowski, M. Effect of Sex and Fatigue on Quiet Standing and Dynamic Balance and Lower Extremity Muscle Stiffness. Eur. J. Appl. Physiol. 2022, 122, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Chapman, D.; Newton, M.; Sacco, P.; Nosaka, K. Greater Muscle Damage Induced by Fast Versus Slow Velocity Eccentric Exercise. Int. J. Sports Med. 2006, 27, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Chen, H.-L.; Lin, M.-J.; Chen, C.-H.; Pearce, A.J.; Nosaka, K. Effect of Two Maximal Isometric Contractions on Eccentric Exercise-Induced Muscle Damage of the Elbow Flexors. Eur. J. Appl. Physiol. 2013, 113, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
Variable | ICC (95%CI) | CV (SD) |
---|---|---|
VL Stiffness | 0.94 (0.84–0.98) | 3.9 ± 3.1% |
VL Frequency | 0.89 (0.71–0.96) | 3.7 ± 3.2% |
BF Stiffness | 0.91 (0.77–0.97) | 2.6 ± 1.5% |
BF Frequency | 0.91 (0.77–0.96) | 2.1 ± 1.5% |
Condition | BA (95%CI) | Post (95%CI) | Post_10 (95%CI) | ES (Pre vs. Post) | ES (Pre vs. Post_10 | ES (Post vs. Post_10 |
---|---|---|---|---|---|---|
Stiffness (N/m) | ||||||
SUPRA | 316 ± 45 (294 to 337) | 325 ± 45 (303 to 346) | 321 ± 52 (296 to 346) | 0.2 | 0.1 | 0.08 |
HIGH | 312 ± 45 (290 to 334) | 314 ± 44 (292 to 335) | 311 ± 48 (288 to 334) | 0.04 | 0.02 | 0.06 |
ES | 0.09 | 0.24 | 0.2 | |||
Oscillation Frequency (Hz) | ||||||
SUPRA | 17.1 ± 2 (16.2 to 18) | 17.7 ± 2 * (16.8 to 18.7) | 17.4 ± 2 * (16.5 to 18.4) | 0.29 | 0.15 | 0.15 |
HIGH | 17.1 ± 1.9 (16.2 to 18.1) | 17.1 ± 1.8 (16.2 to 18) | 17 ± 1.9 (16.1 to 18) | 0.00 | 0.05 | 0.05 |
ES | 0.00 | 0.31 | 0.2 |
Condition | BA (95%CI) | Post (95%CI) | Post_10 (95%CI) | ES (Pre vs. Post) | ES (Pre vs. Post_10 | ES (Post vs. Post_10 |
---|---|---|---|---|---|---|
Stiffness (N/m) | ||||||
SUPRA | 299 ± 20 (289 to 308) | 307 ± 22 (296 to 318) | 305 ± 20 (295 to 314) | 0.37 | 0.29 | 0.09 |
HIGH | 301 ± 23 (289 to 312) | 300 ± 19 (291 to 309) | 299 ± 25 (287 to 311) | 0.05 | 0.08 | 0.04 |
ES | 0.09 | 0.33 | 0.26 | |||
Oscillation Frequency (Hz) | ||||||
SUPRA | 16.3 ± 1 (15.8 to 16.7) | 16.6 ± 1 * (16.1 to 17.1) | 16.6 ± 1 * (16.1 to 17.1) | 0.29 | 0.29 | 0.00 |
HIGH | 16.4 ± 1 (15.9 to 16.9) | 16.4 ± 0.9 (15.9 to 16.8) | 16.4 ± 0.9 (15.9 to 16.8) | 0.00 | 0.00 | 0.00 |
ES | 0.1 | 0.21 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzysztofik, M.; Wilk, M.; Kolinger, D.; Pisz, A.; Świtała, K.; Petruzela, J.; Stastny, P. Acute Effects of Supra- and High-Loaded Front Squats on Mechanical Properties of Lower-Limb Muscles. Sports 2023, 11, 148. https://doi.org/10.3390/sports11080148
Krzysztofik M, Wilk M, Kolinger D, Pisz A, Świtała K, Petruzela J, Stastny P. Acute Effects of Supra- and High-Loaded Front Squats on Mechanical Properties of Lower-Limb Muscles. Sports. 2023; 11(8):148. https://doi.org/10.3390/sports11080148
Chicago/Turabian StyleKrzysztofik, Michal, Michal Wilk, Dominik Kolinger, Anna Pisz, Katarzyna Świtała, Jan Petruzela, and Petr Stastny. 2023. "Acute Effects of Supra- and High-Loaded Front Squats on Mechanical Properties of Lower-Limb Muscles" Sports 11, no. 8: 148. https://doi.org/10.3390/sports11080148
APA StyleKrzysztofik, M., Wilk, M., Kolinger, D., Pisz, A., Świtała, K., Petruzela, J., & Stastny, P. (2023). Acute Effects of Supra- and High-Loaded Front Squats on Mechanical Properties of Lower-Limb Muscles. Sports, 11(8), 148. https://doi.org/10.3390/sports11080148