Effect of Hip Muscle Strengthening Exercises on Pain and Disability in Patients with Non-Specific Low Back Pain—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
- a.
- Inclusion Criteria
- b.
- Exclusion criteria
2.3. Extraction and Synthesis of Data
2.4. Assessment of Methodological Quality
3. Results
3.1. Selection of Studies
3.2. Assessment of Methodological Quality
3.3. Characteristics of Participants and Interventions
3.4. Evaluation of the Results
- a.
- Pain
- b.
- Disability level
- c.
- Other parameters evaluated
4. Discussion
4.1. Potential Applications
4.2. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casado-Moral, M.I.; Moix, J.; Vidal, J. Aetiology, chronification and treatment of low back pain. Clínica Salud 2008, 19, 379–392. [Google Scholar]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Elvar, J.R.; Segarra, V.; García-Orea, G.P.; Campillos, J.A.; Sampietro, M.; Moyano, M.; Da Silva, M.E. Proposal for the Design of Functional Rehabilitation Programs in the Population with Low Back Pain by the Physical Exercise Specialist. Int. J. Phys. Exerc. Health Sci. Trainers 2016. [Google Scholar]
- Katz, J.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences. J. Bone Joint Surg. Am. 2006, 88, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; Ellis, J.; Ogilvie, R.; Malmivaara, A.; Tulder, M.W. Exercise therapy for chronic low back pain. Cochrane Database Syst. Rev. 2021, 2021, CD009790. [Google Scholar] [CrossRef]
- Koch, C.; Hänsel, F. Non-specific Low Back Pain and Postural Control During Quiet Standing—A Systematic Review. Front. Psychol. 2019, 10, 586. [Google Scholar] [CrossRef]
- Moix, J.; Cano-Vindel, A. Evidence-based clinical practice guideline for nonspecific low back pain. Ansiedad Estres 2006, 12, 116–128. [Google Scholar]
- Corp, N.; Mansell, G.; Stynes, S.; Wynne-Jones, G.; Morso, L.; Hill, J.C.; van der Windt, D.A. Evidence-based treatment recommendations for neck and low back pain across Europe: A systematic review of guidelines. Eur. J. Pain 2021, 25, 275–295. [Google Scholar] [CrossRef]
- Hernández, G.A.; Salas, J.D.Z. Exercise as a treatment for low back pain management. Rev. Salud Publica 2017, 19, 123–128. [Google Scholar]
- Marín-Peña, O.; Fernández-Tormos, E.; Dantas, P.; Rego, P.; Pérez-Carro, L. Anatomy and function of the coxofemoral joint. Arthroscopic anatomy of the hip. Rev. Esp. Artrosc. Cir. Articul. 2016, 23, 3–10. [Google Scholar] [CrossRef]
- Hatefi, M.; Babakhani, F.; Ashrafizadeh, M. The effect of static stretching exercises on hip range of motion, pain, and disability in patients with non-specific low back pain. J. Exp. Orthop. 2021, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.H.; Hukins, D.W.L. Lower limb involvement in spinal function and low back pain. J. Back Musculoskelet. Rehabil. 2009, 22, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.F.; Malanga, G.A.; Bartoli, L.A.; Feinberg, J.H.; Prybicien, M.; Deprince, M. Hip muscle imbalance and low back pain in athletes: Influence of core strengthening. Med. Sci. Sports Exerc. 2002, 34, 9–16. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, F.L.A.; Fukuda, T.Y.; Souza, C.; Guimarães, J.; Aquino, L.; Carvalho, G.; Powers, C.; Gomes-Neto, M. Addition of specific hip strengthening exercises to conventional rehabilitation therapy for low back pain: A systematic review and meta-analysis. Clin. Rehabil. 2020, 34, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzleff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.M.; Elkins, M.R.; Van der Wees, P.J.; Pinheiro, M.B. Using research to guide practice: The Physiotherapy Evidence Database (PEDro). Braz. J. Phys. Ther. 2020, 24, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Long, H.A.; French, D.P.; Brooks, J.M. Optimising the value of the critical appraisal skills programme (CASP) tool for quality appraisal in qualitative evidence synthesis. Res. Methods Med. Health Sci. 2020, 1, 31–42. [Google Scholar] [CrossRef]
- Bade, M.; Cobo-Estevez, M.; Neeley, D.; Pandya, J.; Gunderson, T.; Cook, C. Effects of manual therapy and exercise targeting the hips in patients with low-back pain-A randomized controlled trial. J. Eval. Clin. Pract. 2017, 23, 734–740. [Google Scholar] [CrossRef]
- Cai, C.; Yang, Y.; Kong, P.W. Comparison of Lower Limb and Back Exercises for Runners with Chronic Low Back Pain. Med. Sci. Sports Exerc. 2017, 49, 2374–2384. [Google Scholar] [CrossRef]
- Fukuda, T.Y.; Aquino, L.M.; Pereira, P.; Ayres, I.; Feio, A.F.; de Jesus, F.L.A.; Gomes-Neto, M. Does adding hip strengthening exercises to manual therapy and segmental stabilization improve outcomes in patients with nonspecific low back pain? A randomized controlled trial. Braz. J. Phys. Ther. 2021, 25, 900–907. [Google Scholar] [CrossRef]
- Jeong, U.C.; Sim, J.H.; Kim, C.Y.; Hwang-Bo, G.; Nam, C.W. The effects of gluteus muscle strengthening exercise and lumbar stabilization exercise on lumbar muscle strength and balance in chronic low back pain patients. J. Phys. Ther. Sci. 2015, 27, 3813–3816. [Google Scholar] [CrossRef]
- Kendall, K.D.; Emery, C.A.; Wiley, J.P.; Ferber, R. The effect of the addition of hip strengthening exercises to a lumbopelvic exercise programme for the treatment of non-specific low back pain: A randomized controlled trial. J. Sci. Med. Sport 2015, 18, 626–631. [Google Scholar] [CrossRef]
- Kim, B.; Yim, J. Core Stability and Hip Exercises Improve Physical Function and Activity in Patients with Non-Specific Low Back Pain: A Randomized Controlled Trial. Tohoku J. Exp. Med. 2020, 251, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, S.Y. Effects of hip exercises for chronic low-back pain patients with lumbar instability. J. Phys. Ther. Sci. 2015, 27, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, J.S.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Romera, E.; Perena, M.; Perena, M.; Rodrigo, M. Pain neurophysiology. Rev. Soc. Esp. Dolor 2000, 7, 11–17. [Google Scholar]
- Santiago, C.; Perez, K.; Castro, N. Low back pain and its relation to disability index in a rehabilitation hospital. Rev. Cient. Méd. 2018, 21, 13–20. [Google Scholar]
- Salvetti, M.G.; Pimenta, C.A.; Braga, P.E.; Corrêa, C.F. Disability related to chronic low back pain: Prevalence and associated factors. Rev. Esc. Enferm. USP 2012, 46, 16–23. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Caballero-García, A.; Córdova Martínez, A.; Lázaro Asensio, M.P.; Fernández-Lázaro, C.I. Physical activity in oncology patients with breast cancer: Non-pharmacological sports-based medical therapy? Systematic review. Arch. Med. Dep. 2020, 37, 266–274. [Google Scholar]
- Sadler, S.; Cassidy, S.; Peterson, B.; Spink, M.; Chuter, V. Gluteus medius muscle function in people with and without low back pain: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 463. [Google Scholar] [CrossRef]
- Tataryn, N.; Simas, V.; Catterall, T.; Furness, J.; Keogh, J.W.L. Posterior-Chain Resistance Training Compared to General Exercise and Walking Programmes for the Treatment of Chronic Low Back Pain in the General Population: A Systematic Review and Meta-Analysis. Sport Med. 2021, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rainville, J.; Hartigan, C.; Jouve, C.; Martinez, E. The influence of intense exercise-based physical therapy program on back pain anticipated before and induced by physical activities. Spine J. 2004, 4, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Searle, A.; Spink, M.; Ho, A.; Chuter, V. Exercise interventions for the treatment of chronic low back pain: A systematic review and meta-analysis of randomised controlled trials. Clin. Rehabil. 2015, 29, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
Study | Item | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Bade M et al. 2016 [18] | Yes | Yes | Yes | No | Yes | Yes | No | p < 0.05 | Yes | Yes | Yes | 9 |
Cai C et al. 2017 [19] | Yes | Yes | Yes | No | Yes | Yes | Yes | 95% CI p < 0.01 | No | Yes | Yes | 9 |
Fukuda TY et al. 2021 [20] | Yes | Yes | Yes | No | Yes | Yes | No | 95% CI | Yes | Yes | No | 8 |
Jeong UC et al. 2015 [21] | Yes | Yes | Yes | Cannot tell | Yes | Yes | Yes | p < 0.01 | No | Yes | Yes | 9 |
Kendal KD et al. 2014 [22] | Yes | Yes | Yes | No | Yes | Yes | No | 95% CI | Yes | Yes | No | 8 |
Kim B and Yim 2020 [23] | Yes | Yes | Yes | No | Yes | Yes | Yes | p < 0.05 | Yes | Yes | Yes | 10 |
Lee SW et al. 2014 [24] | Yes | Yes | Yes | Cannot tell | Yes | Yes | Yes | p < 0.01 | Yes | Yes | Yes | 10 |
Study | Item | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Bade M et al. 2016 [18] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 7 |
Cai C et al. 2017 [19] | Yes | Yes | Yes | Yes | No | No | No | Yes | No | Yes | Yes | 7 |
Fukuda TY et al. 2021 [20] | Yes | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes | 8 |
Jeong UC et al. 2015 [21] | No | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 6 |
Kendall KD et al. 2014 [22] | Yes | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes | 8 |
Kim B and Yim 2020 [23] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | 9 |
Lee SW et al. 2014 [24] | Yes | Yes | No | Yes | No | No | No | Yes | No | Yes | Yes | 6 |
First Author, Year, and Country of Publication | Study Design | Participants (Baseline Sample Side and Characteristics) | Intervention | Outcomes | Results (Pre vs. Post) |
---|---|---|---|---|---|
Bade M et al. 2017, USA [18] | Random controlled trial | ni = 90 (37♀ and 53♂); NSLBP ≥ 2 in NPRS and disability ≥ 20% in ODI CG: ni = 43 (16♀ and 27♂, 11 dropout → nf = 32) Age (mean ± SD): 48.1 ± 2.4 y Height (mean ± SD): 1.7 ± 0.0 m Weight (mean ± SD): 78.5 ± 3.1 Kg Symptom duration (media ± SD): 19.7 ± 7.2 Wk IG: ni = 47 (21♀ and 26♂, 7 dropout → nf = 40) Age (mean ± SD): 44.8 ± 2.3 y Height (mean ± SD): 1.7 ± 0.0 m Weight (mean ± SD): 81.3 ± 4.7 Kg Symptom duration (media ± SD): 20.3 ± 6.5 Wk | CG: MT, coordination, strengthening and resistance trunk ex., PNS mobilizations, tractions, aerobic ex., flexion ex., fitness, centralization and directional preference ex. and procedures | Pain: NPRS Disability: ODI GROC PASS | CG: changes from baseline ↓ NPRS (mean ± SD): 5.4 ± 0.3 vs. 1.9 ± 1.6 ↓ ODI (mean ± SD): 36.7 ± 2.1 vs. 11.9 ± 7.1 |
GI: CG intervention + HM strengthening + hip MT (mobilization degree III-IV, 30 s/technique; A-P mobilization with traction, traction and mobilization P-A in PP) | IG: changes from baseline ↓ NPRS (mean ± SD): 5.1 ± 0.3 vs. 1.1 ± 1.1 ↓ ODI (mean ± SD): 36.4 ± 1.5 vs. 9.1 ± 8.5 IG vs. CG ↓* NPRS (mean ± SD): 1.1 ± 1.1 vs. 1.9 ± 1.6 ↓* ODI (mean ± SD): 9.1 ± 8.5 vs. 11.9 ± 7.1 ↓* GROC (medium (1st quartile, 3rd quartile)): 6.0 (5.0, 7.0) vs. 5.0 (4.9, 6.0) ↔ PASS: yes (36 vs. 26), no (3 vs. 1), missing (6 vs. 12) | ||||
Cai C et al. 2017, Singapore [19] | Random controlled trial, simple blind | ni = 84 (42♀ and 42♂) NSCLBP CG: -LE: ni = 28 (4 dropout → nf = 24) Age (mean ± SD): 26.1 ± 4.1 y Weight (mean ± SD): 61.7 ± 10.8 Kg BMI (mean ± SD): 21.8 ± 2.4 Kg/m2 -LS: ni = 28 (3 dropout → nf = 25) Age (mean ± SD): 26.9 ± 6.4 y Weight (mean ± SD): 60.3 ± 12.1 Kg BMI (mean ± SD): 21.9 ± 2.4 Kg/m2 IG: ni = 28 (3 dropout → nf = 25) Age (mean ± SD): 28.9 ± 5.3 y Weight (mean ± SD): 61.7 ± 12.6 Kg BMI (mean ± SD): 21.7 ± 2.4 Kg/m2 | CG: -LE: Lumbar extensor strengthening ex. -LS: lumbopelvic motor control ex. | Pain: NPRS Disability: PSFS LL strength: dynamometry LE resistance: EMG Activation of trunk-stabilizing muscles: US | CG (LE and LS): changes from baseline ↓* NPRS (mean ± SD): -LE: 3.44 ± 0.87 vs. 0.76 ± 0.78 -LS: 3.62 ± 1.13 vs. 0.65 ± 0.56 ↑* PSFS (mean ± SD): -LE: 6.71 ± 0.92 vs. 8.65 ± 0.85 -LS: 6.62 ± 0.90 vs. 8.81 ± 0.80 ↑ LL strength ↑* LE resistance ↑* Activation of trunk-stabilizing muscles IG: changes from baseline ↓* NPRS (mean ± SD): 3.48 ± 1.00 vs. 0.32 ± 0.48 ↑* PSFS (mean ± SD): 6.52 ± 0.90 vs. 9.23 ± 0.65 ↑* LL strength ↑* LE resistance ↑* Activation of trunk-stabilizing muscles IG vs. CG (LE and LS) ↓* NPRS (mean ± SD): 0.32 ± 0.48 vs. 0.76 ± 0.78 and 0.65 ± 0.56 ↑* PSFS (mean ± SD): 9.23 ± 0.65 vs. 8.65 ± 0.85 and 8.81 ± 0.80 ↑ LL strength ↑* LE endurance ↔ Activation of trunk-stabilizing muscles |
IG: HM and knee strengthening ex. | |||||
Fukuda TY et al. 2021, Brazil [20] | Random controlled trial, simple blind | ni = 70 (37♀ and 33♂) NSCLBP CG: ni = 35 (3 dropout → nf = 32) Age (mean ± SD): 35.2 ± 12.5 y Height (mean ± SD): 1.6 ± 0.1 m Weight (mean ± SD): 72.6 ± 15.6 Kg BMI (mean ± SD): 25.3 ± 4.6 Kg/m2 Symptom duration (mean ± SD): 6.9 ± 8.1 month IG: ni = 35 (4 dropout → nf = 31) Age (mean ± SD): 40.2 ± 12.4 y Height (mean ± SD): 1.7 ± 0.1 m Weight (mean ± SD): 75.8 ± 15.9 Kg BMI (mean ± SD): 25.9 ± 5.4 Kg/m2 Symptom duration (mean ± SD): 8.1 ± 8.9 month | CG: MT (P-A-C mobilization degree III of L1-L5, 5 reps/1 min following Maitland method and myofascial liberation) Segmentary lumbar stabilization ex. | Pain: VAS Disability: RMDQ HM strength: dynamometry Kinematic analysis of gait (LL, trunk, and pelvis) | CG: changes from baseline ↓ VAS (mean ± SD): 5.6 ± 2.1 vs. 2.9 ± 2.0 ↓ RMDQ (mean ± SD): 9.1 ± 4.7 vs. 4.3 ± 3.5 ↑ HM strength ↔ Kinematic analysis IG: changes from baseline ↓ VAS (mean ± SD): 5.5 ± 2.1 vs. 2.3 ± 2.2 ↓ RMDQ (mean ± SD): 8.5 ± 4.6 vs. 4.5 ± 4.4 ↑ HM strength ↔ Kinematic analysis IG vs. CG ↔ VAS (mean ± SD): 2.3 ± 2.2 vs. 2.9 ± 2.0 ↔ RMDQ (mean ± SD): 4.5 ± 4.4 vs. 4.3 ± 3.5 ↔ HM strength ↔ Kinematic analysis |
IG: CG intervention + HM strengthening ex. | |||||
Jeong UC et al. 2015, Korea [21] | Random controlled trial | ni = 40♀ NSLBP ≥ 5 in VAS and disability ≥ 20% in ODI CG: ni = 20♀ (0 dropout → nf = 20) Age (mean ± SD): 41.2 ± 6.7 y Height (mean ± SD): 159.9 ± 4.7 cm Weight (mean ± SD): 56.6 ± 4.2 Kg IG: ni = 20♀ (0 dropout → nf = 20) Age (mean ± SD): 41.2 ± 5.5 y Height (mean ± SD): 161.5 ± 6.0 cm Weight (mean ± SD): 59.7 ± 7.2 Kg | CG: Lumbar stabilization ex. (2 sets/20 reps/10 s) | Disability: ODI Lumbar strength: M3 Balance: Tetrax | CG: changes from baseline ↓ ODI (mean ± SD) (pre–post value): 4.5 ± 2.4 ↑ Lumbar strength ↑ Balance IG: changes from baseline ↓ ODI (mean ± SD) (pre–post value): 9.9 ± 3.2 ↑Lumbar strength ↑ Balance IG vs. CG ↓* ODI (mean ± SD) (pre–post value): 9.9 ± 3.2 vs. 4.5 ± 2.4 ↑* Lumbar strength ↑* Balance |
IG: CG intervention + HM strengthening ex. | |||||
Kendall KD et al. 2014, Canada [22] | Random controlled trial | ni = 80 (42♀ and 38♂); NSCLBP ≥ 5 in VAS CG: ni = 40 (18♀ and 22♂, 4 dropout → nf = 36) Age (95%CI): 33 (33, 41) y Height (95%CI): 172 (169, 175) cm Weight (95%CI): 73 (68, 78) Kg Symptom duration (95%CI): 4 (3, 6) y IG: ni = 40 (24♀ and 16♂, 5 dropout → nf = 35) Age (95%CI): 41 (37, 45) y Height (95%CI): 170 (167, 173) cm Weight (95%CI): 77 (71, 83) Kg Symptom duration (95%CI): 7 (4, 10) y | CG: Lumbopelvic motor control (transverse, multifidus and pelvic floor coordination) | Pain: VAS Disability: ODI HM strength: dynamometry Trendelenburg Test | CG: changes from baseline ↓* VAS (mean (95%CI)): 57 (54, 61) vs. 37 (31, 41) mm ↓* ODI (mean (95%CI)): 22 (19, 24) vs. 14 (11, 17) ↔ HM strength ↔ Trendelenburg Test IG: changes from baseline ↓* VAS (mean (95%CI)): 55 (51, 58) vs. 30 (24, 36) mm ↓* ODI (mean (95%CI)): 20 (17, 23) vs. 12 (10, 14) ↑* HM strength ↔ Trendelenburg Test IG vs. CG ↔ VAS (mean (95%CI)): 30 (24, 36) vs. 37 (31, 41) mm ↔ ODI (mean (95%CI)): 12 (10, 14) vs. 14 (11, 17) ↑* HM strength ↔ Trendelenburg test |
IG: CG intervention + HM strengthening ex. | |||||
Kim B and Yim 2020, Korea [23] | Randomized controlled trial, doble blind | ni = 75 (32♀ and 34♂); NSCLBP ≥ 3 in VAS CG: ni = 25 (5 dropout → nf = 20) Age (mean ± SD): 47.7 ± 8.5 y Height (mean ± SD): 167.7 ± 8.1 cm Weight (mean ± SD): 67.6 ± 8.7 Kg BMI (media ± SD): 23.9 ± 1.0 Kg/m2 IG: -SIG: ni = 25 (3 dropout → nf = 22) Age (mean ± SD): 47.0 ± 9.4 y Height (mean ± SD): 166.5 ± 2.1 cm Weight (mean ± SD): 66.0 ± 9.2 Kg BMI (mean ± SD): 23.6 ± 1.5 Kg/m2 -FIG: ni = 25 (1 dropout → nf = 24) Age (mean ± SD): 47.5 ± 9.7 y Height (mean ± SD): 164.7 ± 8.2 cm Weight (mean ± SD): 65.4 ± 10.4 Kg BMI (mean ± SD): 23.9 ± 1.6 Kg/m2 | CG: Core stability ex. (30 min, 3 session/sem, 6 sem, 10reps/7–8sec) Placebo (light palpation of the lumbosacral region) | Pain: VAS Disability: ODI and RMDQ HM flexibility: TTT, MTT, OT, and FAIRT Balance: OLST QoL: SF-36 | CG: changes from baseline ↓* VAS (mean ± SD): 5.85 ± 1.16 vs. 2.92 ± 0.61 ↓* ODI (mean ± SD): 58.20 ± 5.27 vs. 36.70 ±5.12 ↓* RMDQ (mean ± SD): 11.40 ± 2.28 vs. 5.55 ± 1.82 ↑* HM flexibility ↑* OLST ↑* SF-36 SIG and FIG: changes from baseline ↓* VAS SIG (mean ± SD): 6.12 ± 1.02 vs. 2.37 ± 0.69 FIG (mean ± SD): 5.95 ± 1.09 vs. 2.37 ± 0.67 ↓* ODI SIG (mean ± SD): 56.91 ± 6.92 vs. 30.18 ± 7.66 FIG (mean ± SD): 57.67 ± 6.50 vs. 29.25 ± 7.66 ↓* RMDQ SIG (mean ± SD): 11.23 ± 2.62 vs. 3.54 ± 1.59 FIG (mean ± SD): 11.29 ± 1.85 vs. 3.58 ± 1.35 ↑* HM flexibility ↑* OLST ↑* SF-36 SIG vs. CG ↓* VAS (mean ± SD): 2.37 ± 0.69 vs. 2.92 ± 0.61 ↓* ODI (mean ± SD): 30.18 ± 7.66 vs. 36.70 ± 5.12 ↓* RMDQ (mean ± SD): 3.54 ± 1.59 vs. 5.55 ± 1.82 ↔ HM flexibility ↑* OLST ↑* SF-36 FIG vs. CG ↓* VAS (mean ± SD): 2.37 ± 0.67 vs. 2.92 ± 0.61 ↓* ODI (mean ± SD): 29.25 ± 7.66 vs. 36.70 ± 5.12 ↓* RMDQ (mean ± SD): 3.58 ± 1.35 vs. 5.55 ± 1.82 ↑* HM flexibility ↑* OLST ↑* SF-36 FIG vs. SIG ↔VAS (mean ± SD): 2.37 ± 0.67 vs. 2.37 ± 0.69 ↔ ODI (mean ± SD): 29.25 ± 7.66 vs. 30.18 ± 7.66 ↔ RMDQ (mean ± SD): 3.58 ± 1.35 vs. 3.54 ± 1.59 ↑* HM flexibility ↔ OLST ↔ SF-36 |
IG: -SIG: core stability ex. + HM strengthening ex. FIG: core stability ex. + HM static stretching ex. | |||||
Lee SW et al. 2014, Korea [24] | Randomized controlled trial | ni = 78 CLBP CG: ni = 31 (6 dropout → nf = 25) -CGLS: ni = 20 (4 dropout → nf = 16) Age (mean ± SD): 50.0 ± 11.4 y Height (mean ± SD): 161.9 ± 7.7 cm Weight (mean ± SD): 60.9 ± 9.8 Kg BMI (mean ± SD): 23.2 ± 2.8 Kg/m2 -CGIN: ni = 11 (2 dropout → nf = 9) Age (mean ± SD): 59.3 ± 17.3 y Height (mean ± SD): 161.0 ± 8.3 cm Weight (mean ± SD): 59.5 ± 10.0 Kg BMI (mean ± SD): 22.8 ± 2.9 Kg/m2 IG: ni = 47 (3 dropout → nf = 44) -IGLS: ni = 25 (2 dropout → nf = 23) Age (mean ± SD): 54.9 ± 10.6 y Height (mean ± SD): 161.0 ± 7.1 cm Weight (mean ± SD): 61.9 ± 9.8 Kg BMI (mean ± SD): 23.8 ± 2.8 Kg/m2 -IGIN: ni = 22 (1 dropout → nf = 21) Age (mean ± SD): 61.0 ± 13.2 y Height (mean ± SD): 159.7 ± 6.0 cm Weight (mean ± SD): 59.4 ± 8.9 Kg BMI (mean ± SD): 23.3 ± 2.6 Kg/m2 | CG: Lumbar stability ex. (4 ex./4 sets/4 reps/ 10 s, 30 s rest) | Pain: VAS Disability: modified ODI | CG: changes from baseline ↓* VAS CGLS (mean ± SD): 55.30 ± 10.70 vs. 45.6 ± 10.30 CGIN (mean ± SD): 61.00 ± 10.00 vs. 27.60 ± 9.80 ↓* ODI CGLS (mean ± SD): 25.60 ± 12.30 vs. 21.70 ± 10.70 CGIN (mean ± SD): 30.60 ± 18.80 vs. 18.30 ± 11.10 IG: changes from baseline ↓* VAS IGLS (mean ± SD): 55.70 ± 8.90 vs. 39.60 ± 7.50 IGIN (mean ± SD): 58.90 ± 8.60 vs. 43.3 ± 12.00 ↓* ODI IGLS (mean ± SD): 23.80 ± 10.50 vs. 17.50 ± 8.10 IGIN (mean ± SD): 25.9 ± 15.80 vs. 19.80 ± 12.10 IG vs. CG ↓ VAS ↓ ODI |
IG: CG intervention + HM strengthening ex. + hip mobility ex. |
First Author, Year and Country of Publication | Exercise | Volume and Intensity | Frequency (Days/Week) | Time (Minutes/Session) | Duration (Weeks) | Supervision |
---|---|---|---|---|---|---|
Bade M et al. 2017, USA [18] | Clam in side lying with ER Quadruped hip extension Unilateral bridge Home ex. | 2 sets of 12–15 reps | 7 -Home ex. twice a day | - | - | Yes -Home ex. with instructions |
Cai C et al. 2017, Singapore [19] | Device for strengthening hip abd, extensor, and knee extensor Home ex.: -single-leg squat -wall sit | Supervised: 3 sets of 10 reps, 2 min rest 10 RM Home ex.: 3 sets of 10 rep, 2.5 Kg single-leg squat, and 5 Kg wall sit | Supervised: 2 Home ex.: 5 | 45 | 8 | Yes -Home ex. with instructions |
Fukuda et al. 2021, Brazil [20] | Clam in side lying with ER Lateral straight leg rise with ankle weight Squat with ER Monster Walk with ER | 3 sets of 10 reps 70% RM Ex. with ER: maximum resistance that enables 10 reps | 2 | 45 | 5 | Yes |
Jeong UC et al. 2015, Korea [21] | Gluteus maximus and gluteus medius ex. 3 Wk without resistance and 3 Wk with resistance | 2 sets of 15 reps | 3 | 50 | 6 | Yes |
Kendal KD et al. 2014, Canada [22] | Controlled with US (not specified) Home ex.: open and close kinetic chain hip ex. | Not specified | Supervised: 1 Home ex.: not specified | Not specified | 6 | Yes -Home ex. with instructions |
Kim B and Yim 2020, Korea [23] | FIG: HM static stretching (hamstring, iliopsoas, piriformis, and tensor fasciae latae) SIG: HM strengthening ex. (side lying hip abd with IR, prone heel squeeze, quadruped hip extension, standing gluteal squeeze) | 3 reps of 30 s 10 s rest | 3 | 45 | 6 | Yes |
Lee SW et al. 2014, Korea [24] | To increase ROM: 4 open kinetic chain hip ex. 6 strengthening ex. with ER | 3 sets of 10 reps, 1 min rest 75% RM | 3 | ROM ex.: 20 Strengthening ex.: not specified | 6 | Yes |
Warm-Up | Central Part | Return to Calm | |
---|---|---|---|
Exercises | Joint mobility Muscular activation | HM strengthening: Squat Monster Walk Quadruped hip extension Clam in side lying Bridge | Relax Static stretch Manual therapy |
Intensity | Minimum | 75–80% RM | |
Volume | 2–3 sets/8–12 reps for ex. 1 min rest | ||
Time | 5–10 min | 45–50 min | 5–10 min |
Frequency | 3–4 days/week, with 1–2 days of rest between sessions | ||
Observations | The volume and intensity should be increased as the patient improves, increasing the number of repetitions and/or loads (elastic resistance or weight) | ||
Abbreviations | RM: maximal repetition; reps: repetitions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría, G.; Rodríguez, I.; Rodríguez-Pérez, V.; Cobreros-Mielgo, R.; Lantarón-Caeiro, E.; Seco-Casares, M.; Fernández-Lázaro, D. Effect of Hip Muscle Strengthening Exercises on Pain and Disability in Patients with Non-Specific Low Back Pain—A Systematic Review. Sports 2023, 11, 167. https://doi.org/10.3390/sports11090167
Santamaría G, Rodríguez I, Rodríguez-Pérez V, Cobreros-Mielgo R, Lantarón-Caeiro E, Seco-Casares M, Fernández-Lázaro D. Effect of Hip Muscle Strengthening Exercises on Pain and Disability in Patients with Non-Specific Low Back Pain—A Systematic Review. Sports. 2023; 11(9):167. https://doi.org/10.3390/sports11090167
Chicago/Turabian StyleSantamaría, Gema, Irene Rodríguez, Vicente Rodríguez-Pérez, Raúl Cobreros-Mielgo, Eva Lantarón-Caeiro, Marina Seco-Casares, and Diego Fernández-Lázaro. 2023. "Effect of Hip Muscle Strengthening Exercises on Pain and Disability in Patients with Non-Specific Low Back Pain—A Systematic Review" Sports 11, no. 9: 167. https://doi.org/10.3390/sports11090167
APA StyleSantamaría, G., Rodríguez, I., Rodríguez-Pérez, V., Cobreros-Mielgo, R., Lantarón-Caeiro, E., Seco-Casares, M., & Fernández-Lázaro, D. (2023). Effect of Hip Muscle Strengthening Exercises on Pain and Disability in Patients with Non-Specific Low Back Pain—A Systematic Review. Sports, 11(9), 167. https://doi.org/10.3390/sports11090167