Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Measurements
2.2.1. Anthropometrics and Body Composition
2.2.2. Body Circumferences
2.2.3. Blood Samples and Analysis
2.2.4. Muscular Strength
2.3. Training and Detraining Protocols
2.4. Preparation of Plant Materials and Determination of 20E Content
2.5. Statistical Analyses
3. Results
3.1. Body Composition
3.2. Body Circumferences
3.3. Lower- and Upper-Body Muscle Strengths
3.4. Anabolic and Catabolic Hormones
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Englund, M.; Zhou, C.; Petersson, I.F.; Timpka, S. Muscle strength in adolescent men and risk of cardiovascular disease events and mortality in middle age: A prospective cohort study. BMC Med. 2014, 12, 62. [Google Scholar]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Olsen, L.A.; Nicoll, J.X.; Fry, A.C. The skeletal muscle fiber: A mechanically sensitive cell. Eur. J. Appl. Physiol. 2019, 119, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013, 43, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, I.G.; Viana, R.B.; Soares, S.R.; Freitas, E.D.; de Lira, C.A.; Ferreira-Junior, J.B. Effects of Detraining on Muscle Strength and Hypertrophy Induced by Resistance Training: A Systematic Review. Muscles 2022, 1, 1–15. [Google Scholar] [CrossRef]
- Temirgaziyev, B.S.; Kučáková, K.; Baizhigit, Y.A.; Jurášek, M.; Džubák, P.; Hajdúch, M.; Dolenský, B.; Drašar, P.B.; Tuleuov, B.I.; Adekenov, S.M. Bioavailability and structural study of 20-hydroxyecdysone complexes with cyclodextrins. Steroids 2019, 147, 37–41. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant adaptogens—History and future perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Báthori, M.; Tóth, N.; Hunyadi, A.; Márki, Á.; Zador, E. Phytoecdysteroids and anabolic-androgenic steroids-structure and effects on humans. Curr. Med. Chem. 2008, 15, 75–91. [Google Scholar] [CrossRef]
- Dinan, L.; Dioh, W.; Veillet, S.; Lafont, R. 20-Hydroxyecdysone, from plant extracts to clinical use: Therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines 2021, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Saeng-ngam, S.; Juntawong, N.; Vajarothai, S.; Visetson, S. Comparative study of moulting hormone content in different plant species. In Proceedings of the 42nd Kasetsart University Annual Conference, Kasetsart, Thailand, 3–6 February 2004; Kasetsart University: Chatuchak, Bangkok, Thailand, 2004; pp. 284–290. [Google Scholar]
- Chitrakar, B.; Zhang, M.; Adhikari, B. Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem byproducts. Trends Food Sci. 2019, 93, 1–11. [Google Scholar] [CrossRef]
- Gorelick-Feldman, J.; MacLean, D.; Ilic, N.; Poulev, A.; Lila, M.A.; Cheng, D.; Raskin, I. Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J. Agric. Food Chem. 2008, 56, 3532–3537. [Google Scholar] [CrossRef] [PubMed]
- Isenmann, E.; Ambrosio, G.; Joseph, J.F.; Mazzarino, M.; de la Torre, X.; Zimmer, P.; Kazlauskas, R.; Goebel, C.; Botrè, F.; Diel, P. Ecdysteroids as non-conventional anabolic agent: Performance enhancement by ecdysterone supplementation in humans. Arch. Toxicol. 2019, 93, 1807–1816. [Google Scholar] [CrossRef]
- Lafont, R.; Dinan, L. Practical uses for ecdysteroids in mammals including humans: And update. J. Insect. Sci. 2003, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L. Phytoecdysteroids: Biological aspects. Phytochemistry 2001, 57, 325–339. [Google Scholar] [CrossRef]
- Hirunsai, M.; Yimlamai, T.; Suksamrarn, A. Effect of 20-hydroxyecdysone on proteolytic regulation in skeletal muscle atrophy. In Vivo 2016, 30, 869–877. [Google Scholar] [CrossRef]
- Parr, M.K.; Zhao, P.; Haupt, O.; Ngueu, S.T.; Hengevoss, J.; Fritzemeier, K.H.; Piechotta, M.; Schlörer, N.; Muhn, P.; Zheng, W.Y. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol. Nutr. Food. Res. 2014, 58, 1861–1872. [Google Scholar] [CrossRef]
- Tóth, N.; Szabó, A.; Kacsala, P.; Héger, J.; Zádor, E. 20-Hydroxyecdysone increases fiber size in a muscle-specific fashion in rat. Phytomedicine 2008, 15, 691–698. [Google Scholar] [CrossRef]
- Wilborn, C.D.; Taylor, L.W.; Campbell, B.I.; Kerksick, C.; Rasmussen, C.J.; Greenwood, M.; Kreider, R.B. Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. Int. Soc. Sports Nutr. 2006, 3, 19–27. [Google Scholar] [CrossRef]
- Haff, G.; Triplett, T.N. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Sripinyowanich, S.; Kil, E.-J.; Petchsri, S.; Jo, Y.; Choi, H.; Cho, W.K.; Lee, S. De novo transcriptome assembly of two microsorum fern species identifies enzymes required for two upstream pathways of phytoecdysteroids. Int. J. Mol. Sci. 2021, 22, 2085. [Google Scholar] [CrossRef] [PubMed]
- Sripinyowanich, S.; Petchsri, S.; Tongyoo, P.; Lee, T.-K.; Lee, S.; Cho, W.K. Comparative Transcriptomic Analysis of Genes in the 20-Hydroxyecdysone Biosynthesis in the Fern Microsorum scolopendria towards Challenges with Foliar Application of Chitosan. Int. J. Mol. Sci. 2023, 24, 2397. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L.; Balducci, C.; Guibout, L.; Lafont, R. Database of Human Food Plants and Whether They Have Been Assessed for the Presence or Absence of Ecdysteroids. 2019. Available online: https://ecdybase.org/ecdysteroids_in_food_plants.pdf (accessed on 25 August 2023).
- Dinan, L.; Savchenko, T.; Whiting, P. Phytoecdysteroids in the genus Asparagus (Asparagaceae). Phytochemistry 2001, 56, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Wichit, W.; Wongmaneeroj, M.; Pongprayoon, W.; Sripinyowanich, S. Elicitor-induced phytochemical properties and transcriptional changes of genes associated with 20-hydroxyecdysone biosynthesis in Asparagus officinalis. Malays. J. Biochem. Mol. Biol. 2022, 47–57. [Google Scholar]
- Fitts, R.H.; Peters, J.R.; Dillon, E.L.; Durham, W.J.; Sheffield-Moore, M.; Urban, R.J. Weekly versus monthly testosterone administration on fast and slow skeletal muscle fibers in older adult males. J. Clin. Endocrinol. Metab. 2015, 100, E223–E231. [Google Scholar] [CrossRef]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and menopause: The role of estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Cornford, M.; Gaytan, H.; Lee, M.L.; Bhasin, S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J. Clin. Endocrinol. Metab. 2006, 91, 3024–3033. [Google Scholar] [CrossRef]
- Bhasin, S.; Storer, T.W.; Berman, N.; Callegari, C.; Clevenger, B.; Phillips, J.; Bunnell, T.J.; Tricker, R.; Shirazi, A.; Casaburi, R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med. 1996, 335, 1–7. [Google Scholar] [CrossRef]
- Kumpun, S.; Girault, J.-P.; Dinan, L.; Blais, C.; Maria, A.; Dauphin-Villemant, C.; Yingyongnarongkul, B.; Suksamrarn, A.; Lafont, R. The metabolism of 20-hydroxyecdysone in mice: Relevance to pharmacological effects and gene switch applications of ecdysteroids. J. Steroid Biochem. Mol. Biol. 2011, 126, 1–9. [Google Scholar] [CrossRef]
- Parr, M.K.; Botrè, F.; Naß, A.; Hengevoss, J.; Diel, P. Ecdysteroids: A novel class of anabolic agents? Biol. Sport 2015, 32, 169–173. [Google Scholar] [CrossRef]
- Gorelick-Feldman, J.; Cohick, W.; Raskin, I. Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. Steroids 2010, 75, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ratamess, N.A.; Peterson, M.D.; Contreras, B.; Tiryaki-Sonmez, G. Influence of resistance training frequency on muscular adaptations in well-trained men. J. Strength Cond. Res. 2015, 29, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Chermnykh, N.; Shimanovskiĭ, N.; Shutko, G.; Syrov, V. The action of methandrostenolone and ecdysterone on the physical endurance of animals and on protein metabolism in the skeletal muscles. Farmakol. Toksikol. 1988, 51, 57–60. [Google Scholar] [PubMed]
- Viru, A.; Viru, M. Cortisol-essential adaptation hormone in exercise. Int. J. Sports Med. 2004, 25, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Tahimic, C.G.; Wang, Y.; Bikle, D.D. Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. 2013, 4, 6. [Google Scholar] [CrossRef]
PLA (n = 10) | 20E (n = 10) | p-Value | |
---|---|---|---|
Age (years) | 20.4 ± 1.4 (18–23) | 19.8 ± 0.8 (19–21) | 0.241 |
Height (cm) | 172.6 ± 5 (164–179) | 171.1 ± 4.9 (164–183) | 0.509 |
Weight (kg) | 73.5 ± 10.3 (55–96.4) | 70.9 ± 9.4 (54.4–85.3) | 0.571 |
BMI (kg/m2) | 24.6 ± 3 (20.5–30.2) | 24.2 ± 2.6 (20.2–28.8) | 0.725 |
FM (kg) | 16.9 ± 6.7 (7.9–29.9) | 15.8 ± 5.8 (8–27.8) | 0.698 |
FFM (kg) | 56 ± 6.2 (43.5–67.2) | 54 ± 6.5 (44.8–62) | 0.485 |
V̇O2peak (mL/kg/min) | 42.8 ± 9.2 (20.8–53.7) | 38.4 ± 5.5 (27.4–46.8) | 0.216 |
1RM Leg press (kg) | 360 ± 61.2 (264.7–469.1) | 350.6 ± 80.1 (232.3–466.8) | 0.253 |
1RM Bench press (kg) | 63.7 ± 11.1 (45–82.3) | 58 ± 10.3 (41.1–78.8) | 0.770 |
PLA (n = 10) | 20E (n = 10) | Time Effect η2 (p-Value) | Group × Time Interaction η2 (p-Value) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Training | TR-12 | DeTR-6 | DeTR-12 | Pre-Training | TR-12 | DeTR-6 | DeTR-12 | |||
Body composition | ||||||||||
Total BM (kg) | 73.7 ± 10.4 | 75.2 ± 10.3 | 74.4 ± 9.9 | 73.2 ± 9.4 b** | 71.5 ± 9.5 | 72.3 ± 8.9 | 72.5 ± 8.5 | 72.3 ± 7.8 | 0.152 (0.030) †† | 0.081 (0.203) |
Total %BF (%) | 23.3 ± 6.4 | 22.9 ± 6.2 | 23.7 ± 6.6 | 22.6 ± 6.2 | 22.7 ± 5.9 | 20.7 ± 6.1 | 21.9 ± 5.5 | 21.7 ± 5.6 | 0.132 (0.053) | 0.065 (0.298) |
Total FM (kg) | 16.9 ± 6.7 | 16.9 ± 6.2 | 17.2 ± 6.4 | 16.1 ± 5.6 | 15.8 ± 5.8 | 14.7 ± 5.7 | 15.5 ± 5.2 | 15.3 ± 5.1 | 0.076 (0.229) | 0.059 (0.342) |
Total FFM (kg) | 56 ± 6.2 | 57.6 ± 6.8 | 56.8 ± 6.6 | 57.1 ± 6.2 | 54 ± 6.5 | 56 ± 5.7 a* | 55.4 ± 5.5 | 55 ± 4.9 | 0.278 (<0.001) †† | 0.071 (0.257) |
Arm mass (kg) | 8.8 ± 1.5 | 9.2 ± 1.5 | 9.2 ± 1.8 | 8.9 ± 1.6 b** | 8.3 ± 1.4 | 8.5 ± 1.1 | 8.6 ± 1.1 | 8.5 ± 1.1 | 0.218 (0.004) †† | 0.037 (0.556) |
Arm fat (%) | 21.4 ± 7.2 | 21 ± 7 | 21.2 ± 6.9 | 20.7 ± 6.8 | 19.6 ± 4.8 | 17 ± 5.4 a* | 18.6 ± 4.6 | 18.5 ± 4.4 | 0.176 (0.014) †† | 0.105 (0.108) |
Arm FM (kg) | 1.8 ± 0.9 | 1.9 ± 0.8 | 1.9 ± 0.9 | 1.8 ± 0.8 | 1.6 ± 0.5 | 1.4 ± 0.6 | 1.5 ± 0.5 | 1.5 ± 0.5 | 0.073 (0.248) | 0.103 (0.114) |
Arm LM (kg) | 6.6 ± 0.9 | 6.9 ± 1 | 6.9 ± 1.2 | 6.7 ± 1.1 | 6.4 ± 1.1 | 6.7 ± 0.8 a* | 6.7 ± 0.8 | 6.6 ± 0.8 | 0.310 (<0.001) †† | 0.013 (0.867) |
Leg mass (kg) | 26.9 ± 4.1 | 27.2 ± 4.1 | 26.9 ± 3.8 | 26.3 ± 3.7 | 26.1 ± 4.1 | 26.1 ± 3.9 | 26.1 ± 3.5 | 25.7 ± 3.1 | 0.110 (0.096) | 0.017 (0.819) |
Leg fat (%) | 22.4 ± 4.8 | 22.1 ± 5 | 23.1 ± 5.5 | 22.2 ± 5 | 22.1 ± 5.2 | 20.5 ± 5.4 | 21.4 ± 4.7 | 21.1 ± 4.8 | 0.122 (0.068) | 0.064 (0.310) |
Leg FM (kg) | 5.9 ± 2 | 5.8 ± 1.9 | 6 ± 2 | 5.7 ± 1.8 | 5.6 ± 2 | 5.2 ± 2 | 5.4 ± 1.7 | 5.3 ± 1.7 | 0.096 (0.138) | 0.037 (0.556) |
Leg LM (kg) | 19.8 ± 2.5 | 20.1 ± 2.7 | 19.7 ± 2.4 | 19.5 ± 2.5 b** | 19.4 ± 2.4 | 19.7 ± 2.3 | 19.5 ± 2.1 | 19.3 ± 1.8 | 0.157 (0.026) †† | 0.026 (0.692) |
Body circumferences | ||||||||||
Chest (cm) | 94.7 ± 5.2 | 97.6 ± 5.5 a** | 96.4 ± 4.8 | 94.9 ± 4.8 b*** | 92.2 ± 5.3 | 94.3 ± 4.9 a* | 93.8 ± 5.8 | 93.7 ± 4.5 | 0.362 (<0.001) †† | 0.133 (0.051) |
Waist (cm) | 79.5 ± 7.5 | 80.3 ± 6.6 | 79.9 ± 6.4 | 79.5 ± 6.1 | 78.1 ± 5.9 | 78.8 ± 6.2 | 79.4 ± 5.2 | 79.3 ± 5.3 | 0.055 (0.376) | 0.080 (0.208) |
Arm (cm) | 32 ± 3.6 | 31.6 ± 3.2 | 31.3 ± 3.1 | 30.8 ± 3.1 | 30.5 ± 3.3 | 30.7 ± 2.9 | 30.6 ± 2.7 | 30.4 ± 2.6 | 0.177 (0.014) †† | 0.102 (0.119) |
Forearm (cm) | 28 ± 1.3 | 28.1 ± 1.2 | 28.1 ± 1.5 | 27.6 ± 1.3 b*** | 27.2 ± 1.8 | 27.2 ± 1.5 | 27.8 ± 1.9 | 27 ± 1.4 | 0.236 (0.002) †† | 0.075 (0.238) |
Thigh (cm) | 58 ± 5.8 | 60.3 ± 4.4 | 59.7 ± 4.8 | 58.7 ± 4.4 b** | 57.5 ± 3.8 | 58 ± 3.9 | 58.5 ± 3.7 | 57.2 ± 3.7 | 0.237 (0.002) †† | 0.077 (0.226) |
Calf (cm) | 39.8 ± 3.3 | 40.1 ± 2.7 | 40.2 ± 3.3 | 39.6 ± 3.2 | 39.2 ± 3.2 | 39.5 ± 3 | 39.6 ± 2.8 | 39.5 ± 2.7 | 0.105 (0.110) | 0.048 (0.448) |
Muscular strengths | ||||||||||
1RM leg press (kg) | 360 ± 61.2 | 486.9 ± 111.5 a** | 466.7 ± 68.4 | 469.2 ± 120.2 | 305.6 ± 80.1 | 448.5 ± 63 a** | 433.6 ± 49.7 | 443.3 ± 68.1 | 0.593 (<0.001) †† | 0.021 (0.763) |
1RM leg press/FFM | 5.8 ± 1 | 8.4 ± 1.4 a** | 8.3 ± 1.2 | 8.2 ± 1.6 | 5.6 ± 1.3 | 8 ± 0.8 a** | 7.8 ± 0.7 | 7.8 ± 1.1 | 0.673 (<0.001) †† | 0.005 (0.961) |
1RM bench press (kg) | 63.7 ± 11.1 | 74 ± 13.5 a** | 70.8 ± 14.3 | 68.3 ± 15.4 b*** | 58 ± 10.3 | 68.4 ± 11.7 a** | 70.2 ± 13 | 68.6 ± 10.2 | 0.622 (<0.001) †† | 0.027 (0.156) |
1RM bench press/FFM | 1.1 ± 0.2 | 1.3 ± 0.2 a** | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.1 ± 0.1 | 1.2 ± 0.1 a** | 1.3 ± 0.2 | 1.2 ± 0.1 | 0.487 (<0.001) †† | 0.104 (0.113) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denben, B.; Sripinyowanich, S.; Ruangthai, R.; Phoemsapthawee, J. Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males. Sports 2023, 11, 175. https://doi.org/10.3390/sports11090175
Denben B, Sripinyowanich S, Ruangthai R, Phoemsapthawee J. Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males. Sports. 2023; 11(9):175. https://doi.org/10.3390/sports11090175
Chicago/Turabian StyleDenben, Barakat, Siriporn Sripinyowanich, Ratree Ruangthai, and Jatuporn Phoemsapthawee. 2023. "Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males" Sports 11, no. 9: 175. https://doi.org/10.3390/sports11090175
APA StyleDenben, B., Sripinyowanich, S., Ruangthai, R., & Phoemsapthawee, J. (2023). Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males. Sports, 11(9), 175. https://doi.org/10.3390/sports11090175