Ground Reaction Forces, Asymmetries and Performance of Change of Direction Tasks in Youth Elite Female Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
70° and 180° COD Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Comparison of Change of Direction Speed Performance and Asymmetries between Team-Sport Athletes: Application of Change of Direction Deficit. Sports 2018, 6, 174. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.J.; Richards, J.; Nixon, D.G.D.; Harvey, L.J.; Fletcher, I.M. Do stiffness and asymmetries predict change of direction performance? J. Sports Sci. 2017, 35, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A Vertical Jump Force Test for Assessing Bilateral Strength Asymmetry in Athletes. Med. Sci. Sport. Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef]
- Grindem, H.; Logerstedt, D.; Eitzen, I.; Moksnes, H.; Axe, M.J.; Snyder-Mackler, L.; Engebretsen, L.; Risberg, M.A. Single-Legged Hop Tests as Predictors of Self-Reported Knee Function in Nonoperatively Treated Individuals with Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2011, 39, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Fort-Vanmeerhaeghe, A.; Milà-Villarroel, R.; Pujol-Marzo, M.; Arboix-Alió, J.; Bishop, C. Higher Vertical Jumping Asymmetries and Lower Physical Performance are Indicators of Increased Injury Incidence in Youth Team-Sport Athletes. J. Strength Cond. Res. 2022, 36, 2204–2211. [Google Scholar] [CrossRef]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Myer, G.D.; Brent, J.L.; Ford, K.R.; Hewett, T.E. Real-Time Assessment and Neuromuscular Training Feedback Techniques to Prevent Anterior Cruciate Ligament Injury in Female Athletes. Strength Cond. J. 2011, 33, 21–35. [Google Scholar] [CrossRef]
- Fox, K.T.; Pearson, L.T.; Hicks, K.M. The effect of lower inter-limb asymmetries on athletic performance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0286942. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in single and triple hop are not detrimental to change of direction speed. J. Trainol. 2017, 6, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.A.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship Between Unilateral Jumping Ability and Asymmetry on Multidirectional Speed in Team-Sport Athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Assessing Asymmetries in Change of Direction Speed Performance: Application of Change of Direction Deficit. J. strength Cond. Res. 2019, 33, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Manzi, V.; D’Ottavio, S.; Annino, G.; Padua, E.; Bishop, D. Relation Between Maximal Aerobic Power and the Ability to Repeat Sprints in Young Basketball Players. J. Strength Cond. Res. 2007, 21, 1172. [Google Scholar] [CrossRef]
- Banda, D.S.; Beitzel, M.M.; Kammerer, J.D.; Salazar, I.; Lockie, R.G. Lower-Body Power Relationships to Linear Speed, Change-of-Direction Speed, and High-Intensity Running Performance in DI Collegiate Women’s Basketball Players. J. Hum. Kinet. 2019, 68, 223–232. [Google Scholar] [CrossRef]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical Determinants of Faster Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Bahr, R.; Krosshaug, T. Understanding injury mechanisms: A key component of preventing injuries in sport. Br. J. Sports Med. 2005, 39, 324–329. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Vicens-Bordas, J.; Arboix-Alió, J. Seasonal variation of inter-limb jumping asymmetries in youth team-sport athletes. J. Sports Sci. 2021, 39, 2850–2858. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Brazier, J.; Jarvis, P.; Chavda, S.; Bromley, T.; Turner, A. Effects of Interlimb Asymmetries on Acceleration and Change of Direction Speed. J. Strength Cond. Res. 2021, 35, 2095–2101. [Google Scholar] [CrossRef]
- Dos’Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical Determinants of the Modified and Traditional 505 Change of Direction Speed Test. J. Strength Cond. Res. 2020, 34, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.J.; Fletcher, I.M. Lower limb stiffness testing in athletic performance: A critical review. Sport. Biomech. 2021, 20, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of Direction Deficit: A more isolated measure of change of direction performance than total 505 time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of Measures Obtained During Single and Repeated Countermovement Jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for Behavioural Science; Lawrence Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Viera, A.; Garrett, J. Understanding Interobserver Agreement: The Kappa Statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Dos’Santos, T.; Thomas, C.; Jones, P.A. The effect of angle on change of direction biomechanics: Comparison and inter-task relationships. J. Sports Sci. 2021, 39, 2618–2631. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Skok, O.; Dos’Santos, T.; Bishop, C. Assessing limb dominance and inter-limb asymmetries over multiple angles during change of direction speed tests in basketball players. J. Strength Cond. Res. 2023, 37, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sport. Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint. J. Appl. Biomech. 2018, 34, 104–110. [Google Scholar] [CrossRef]
- Arboix-Alió, J.; Bishop, C.; Benet, A.; Buscà, B.; Aguilera-Castells, J.; Fort-Vanmeerhaeghe, A. Assessing the Magnitude and Direction of Asymmetry in Unilateral Jump and Change of Direction Speed Tasks in Youth Female Team-Sport Athletes. J. Hum. Kinet. 2021, 79, 15–27. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Benet-Vigo, A.; Montalvo, A.; Arboix, A.; Buscà, B.; Arboix-Alió, J. Relationship between Performance and Inter-Limb Asymmetries Using Flywheel Resistance Device in Elite Youth Female Basketball Players. Biology 2022, 11, 812. [Google Scholar] [CrossRef]
- Wren, T.A.L.; O’Callahan, B.; Katzel, M.J.; Zaslow, T.L.; Edison, B.R.; VandenBerg, C.D.; Conrad-Forrest, A.; Mueske, N.M. Movement variability in pre-teen and teenage athletes performing sports related tasks. Gait Posture 2020, 80, 228–233. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Montalvo, A.M.; Buscà, B.; Arboix-Alió, J. Effects of Exercise-Induced Neuromuscular Fatigue on Jump Performance and Lower-Limb Asymmetries in Youth Female Team Sport Athletes. J. Hum. Kinet. 2023, 89, 19. [Google Scholar] [CrossRef]
Test | Variables | Limb | Mean ± SD | ICC (95% CI) | CV (%) |
---|---|---|---|---|---|
COD 180° | Time (s) | Right | 2.75 ± 0.15 | 0.91 (0.74–0.96) | 5.41 |
Left | 2.74 ± 0.15 | 0.88 (0.71–0.92) | 7.44 | ||
GCT (s) | Right | 0.73 ± 0.04 | 0.82 (0.66–0.90) | 4.51 | |
Left | 0.73 ± 0.03 | 0.82 (0.64–0.89) | 3.72 | ||
GRFx (anterior–posterior) | Right | 258.99 ± 107.01 | 0.85 (0.62–0.91) | 4.67 | |
Left | 282.90 ± 83.30 | 0.84 (0.60–0.87) | 5.54 | ||
GRFy (mediolateral) | Right | 46.38 ± 33.5 | 0.87 (0.73–0.92) | 4.46 | |
Left | 50.53 ± 28.45 | 0.86 (0.63–0.95) | 5.21 | ||
GRFz (vertical) | Right | 841.48 ± 179.40 | 0.79 (0.46–0.92 | 6.01 | |
Left | 898.76 ± 170.57 | 0.78 (0.41–0.92) | 2.89 | ||
COD 70° | Time (s) | Right | 2.31 ± 0.17 | 0.91 (0.78–0.97) | 7.52 |
Left | 2.33 ± 0.13 | 0.94 (0.84–0.98) | 6.41 | ||
GCT (s) | Right | 0.62 ± 0,02 | 0.94 (0.84–0.98) | 1.32 | |
Left | 0.61 ± 0.02 | 0.86 (0.62–0.95) | 1.94 | ||
GRFx (anterior–posterior) | Right | 146.91 ± 52.93 | 0.91 (0.75–0.97) | 2.85 | |
Left | 139.59 ± 48.37 | 0.90 (0.74–0.96) | 6.89 | ||
GRFy (mediolateral) | Right | 390.14 ± 61.79 | 0.89 (0.70–0.96) | 1.61 | |
Left | 401.51 ± 73.22 | 0.93 (0.81–0.97) | 2.64 | ||
GRFz (vertical) | Right | 1386.44 ± 173.54 | 0.92 (0.80–0.97) | 1.55 | |
Left | 1349.60 ± 165.95 | 0.89 (0.71–0.96) | 1.75 |
Time (s) | GCT (s) | GRFx (Anterior–Posterior) | GRFy (Mediolateral) | GRFz (Vertical) | |
---|---|---|---|---|---|
HPL | 2.72 ± 0.15 | 0.72 ± 0.03 | 308.59 ± 97.14 | 58.70 ± 31.19 | 932.67 ± 172.42 |
LPL | 2.79 ± 0.14 | 0.75 ± 0.04 | 226.78 ± 72.84 | 46.57 ± 27.82 | 796.50 ± 152.64 |
p value | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 |
ES | 1.78 (1.02–2.53) | 0.82 (0.27–1.35) | 1.18 (0.56–1.78) | 0.98 (0.40–1.54) | 1.24 (0.61–1.85) |
ASI (%) | 3.02 ± 1.73 | 3.96 ± 4.93 | 24.31 ± 17.39 | 20.9 ± 16.1 | 14.02 ± 10.41 |
Time (s) | GCT (s) | GRFx (Anterior–Posterior) | GRFy (Mediolateral) | GRFz (Vertical) | |
---|---|---|---|---|---|
HPL | 2.27 ± 0.15 | 0.61 ± 0.01 | 164.66 ± 44.26 | 421.18 ± 66.11 | 1422.74 ± 149.24 |
LPL | 2.39 ± 0.15 | 0.62 ± 0.02 | 129.77 ± 40.94 | 369.85 ± 56.87 | 1323.91 ± 170.17 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
ES | 1.71 (0.96–2.43) | 1.50 (0.81–2.17) | 1.36 (0.71–2.01) | 1.35 (0.69–1.98) | 1.31 (0.65–1.92) |
ASI (%) | 5.09 ± 3.01 | 1.99 ± 1.51 | 21.7 ± 12.9 | 11.8 ± 7.79 | 7.07 ± 5.40 |
Test Comparison | Kappa Coefficient | Descriptor |
---|---|---|
COD time | 0.143 | Slight |
GCT | 0.087 | Slight |
GRFx (anterior–posterior) | 0.024 | Slight |
GRFy (mediolateral) | −0.111 | Poor |
GRFz (vertical) | 0.129 | Slight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arboix-Alió, J.; Buscà, B.; Miró, A.; Bishop, C.; Fort-Vanmeerhaeghe, A. Ground Reaction Forces, Asymmetries and Performance of Change of Direction Tasks in Youth Elite Female Basketball Players. Sports 2024, 12, 21. https://doi.org/10.3390/sports12010021
Arboix-Alió J, Buscà B, Miró A, Bishop C, Fort-Vanmeerhaeghe A. Ground Reaction Forces, Asymmetries and Performance of Change of Direction Tasks in Youth Elite Female Basketball Players. Sports. 2024; 12(1):21. https://doi.org/10.3390/sports12010021
Chicago/Turabian StyleArboix-Alió, Jordi, Bernat Buscà, Adrià Miró, Chris Bishop, and Azahara Fort-Vanmeerhaeghe. 2024. "Ground Reaction Forces, Asymmetries and Performance of Change of Direction Tasks in Youth Elite Female Basketball Players" Sports 12, no. 1: 21. https://doi.org/10.3390/sports12010021
APA StyleArboix-Alió, J., Buscà, B., Miró, A., Bishop, C., & Fort-Vanmeerhaeghe, A. (2024). Ground Reaction Forces, Asymmetries and Performance of Change of Direction Tasks in Youth Elite Female Basketball Players. Sports, 12(1), 21. https://doi.org/10.3390/sports12010021