An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery
Abstract
:1. Introduction
2. Glycine’s Background
3. Biochemical Metabolism of Glycine in Mammals
4. The Role of Glycine in Skeletal Muscle Metabolism
5. The Role of Glycine Supplementation on Muscle Strength, Regeneration, and Growth
6. Glycine’s Effect on Sleep Quality and Recovery
7. Conclusions
8. Limitations
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cid-Calfucura, I.; Herrera-Valenzuela, T.; Franchini, E.; Falco, C.; Alvial-Moscoso, J.; Pardo-Tamayo, C.; Zapata-Huenullán, C.; Ojeda-Aravena, A.; Valdés-Badilla, P. Effects of Strength Training on Physical Fitness of Olympic Combat Sports Athletes: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3516. [Google Scholar] [CrossRef] [PubMed]
- Enroth, L.; Raitanen, J.; Halonen, P.; Tiainen, K.; Jylhä, M. Trends of Physical Functioning, Morbidity, and Disability-Free Life Expectancy Among the Oldest Old: Six Repeated Cross-Sectional Surveys Between 2001 and 2018 in the Vitality 90+ Study. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of Nutraceuticals in Human Health. J. Food Sci. Technol. 2012, 49, 173–183. [Google Scholar] [CrossRef]
- Chandra, S.; Saklani, S.; Kumar, P.; Kim, B.; Coutinho, H.D. Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. BioMed Res. Int. 2022, 2022, 2051017. [Google Scholar] [CrossRef] [PubMed]
- Stickel, F.; Droz, S.; Patsenker, E.; Bögli-Stuber, K.; Aebi, B.; Leib, S.L. Severe Hepatotoxicity Following Ingestion of Herbalife® Nutritional Supplements Contaminated with Bacillus Subtilis. J. Hepatoly 2009, 50, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Gawad, M.A.; Kalawy, H.A. Gym Nephropathy ‘Bodybuilding versus Kidney Damaging’. J. Egypt. Soc. Nephrol. Transpl. 2019, 19, 124–128. [Google Scholar] [CrossRef]
- Dhar, R.; Stout, C.W.; Link, M.S.; Homoud, M.K.; Weinstock, J.; Estes, N.A.M. 3rd Cardiovascular Toxicities of Performance-Enhancing Substances in Sports. Mayo Clin. Proc. 2005, 80, 1307–1315. [Google Scholar] [CrossRef]
- Cohen, P.A. Hazards of Hindsight--Monitoring the Safety of Nutritional Supplements. N. Engl. J. Med. 2014, 370, 1277–1280. [Google Scholar] [CrossRef]
- Thibaut, E.; Eakins, J.; Vos, S.; Scheerder, J. The Determinants and Income Elasticities of Direct and Indirect Sports Expenditure Categories. Eur. Sport. Manag. Quar. 2018, 18, 175–192. [Google Scholar] [CrossRef]
- Jacobs, P.L.; Goldstein, E.R.; Blackburn, W.; Orem, I.; Hughes, J.J. Glycine Propionyl-L-Carnitine Produces Enhanced Anaerobic Work Capacity with Reduced Lactate Accumulation in Resistance Trained Males. J. Int. Soc. Sports Nutr. 2009, 6, 9. [Google Scholar] [CrossRef]
- Buchman, A.L.; O’Brien, W.; Ou, C.N.; Rognerud, C.; Alvarez, M.; Dennis, K.; Ahn, C. The Effect of Arginine or Glycine Supplementation on Gastrointestinal Function, Muscle Injury, Serum Amino Acid Concentrations and Performance during a Marathon Run. Int. J. Sports Med. 1999, 20, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Borges, J.P.; Sætra, R.S.R.; Volchuk, A.; Bugge, M.; Devant, P.; Sporsheim, B.; Kilburn, B.R.; Evavold, C.L.; Kagan, J.C.; Goldenberg, N.M.; et al. Glycine Inhibits NINJ1 Membrane Clustering to Suppress Plasma Membrane Rupture in Cell Death. eLife 2022, 11, e78609. [Google Scholar] [CrossRef] [PubMed]
- Ham, D.J.; Murphy, K.T.; Chee, A.; Lynch, G.S.; Koopman, R. Glycine Administration Attenuates Skeletal Muscle Wasting in a Mouse Model of Cancer Cachexia. Clin. Nutr. 2014, 33, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Petrat, F.; Boengler, K.; Schulz, R.; de Groot, H. Glycine, a Simple Physiological Compound Protecting by yet Puzzling Mechanism(s) against Ischaemia–Reperfusion Injury: Current Knowledge. Br. J. Pharmacol. 2012, 165, 2059–2072. [Google Scholar] [CrossRef]
- Aguayo-Cerón, K.A.; Sánchez-Muñoz, F.; Gutierrez-Rojas, R.A.; Acevedo-Villavicencio, L.N.; Flores-Zarate, A.V.; Huang, F.; Giacoman-Martinez, A.; Villafaña, S.; Romero-Nava, R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int. J. Mol. Sci. 2023, 24, 11236. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Hevia, E.; de Paz-Lugo, P.; Cornish-Bowden, A.; Cárdenas, M.L. A Weak Link in Metabolism: The Metabolic Capacity for Glycine Biosynthesis Does Not Satisfy the Need for Collagen Synthesis. J. Biosci. 2009, 34, 853–872. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Blais, A.; Elango, R.; Saito, K.; Shimomura, Y.; Kadowaki, M.; Matsumoto, H. Tolerable Amounts of Amino Acids for Human Supplementation: Summary and Lessons from Published Peer-Reviewed Studies. Amino Acids 2021, 53, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Arwert, L.I.; Deijen, J.B.; Drent, M.L. Effects of an Oral Mixture Containing Glycine, Glutamine and Niacin on Memory, GH and IGF-I Secretion in Middle-Aged and Elderly Subjects. Nutr. Neurosci. 2003, 6, 269–275. [Google Scholar] [CrossRef]
- Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients 2023, 15, 4003. [Google Scholar] [CrossRef]
- Nagata, C.; Wada, K.; Tamura, T.; Kawachi, T.; Konishi, K.; Tsuji, M.; Nakamura, K. Dietary Intakes of Glutamic Acid and Glycine Are Associated with Stroke Mortality in Japanese Adults. J. Nutr. 2015, 145, 720–728. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Zuniga-Munoz, A.; Guarner-Lans, V. Beneficial Effects of the Amino Acid Glycine. Mini-Rev. Med. Chem. 2016, 17, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Evins, A.E.; Fitzgerald, S.M.; Wine, L.; Rosselli, R.; Goff, D.C. Placebo-Controlled Trial of Glycine Added to Clozapine in Schizophrenia. Am. J. Psychiatry 2000, 157, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Ascher, E.; Hanson, J.N.; Cheng, W.; Hingorani, A.; Scheinman, M. Glycine Preserves Function and Decreases Necrosis in Skeletal Muscle Undergoing Ischemia and Reperfusion Injury. Surgery 2001, 129, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine Metabolism in Animals and Humans: Implications for Nutrition and Health. Amino Acids 2013, 45, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.C.; Hsu, J.W.; Tai, E.S.; Chacko, S.; Wu, V.; Lee, C.F.; Kovalik, J.-P.; Jahoor, F. De Novo Glycine Synthesis Is Reduced in Adults with Morbid Obesity and Increases Following Bariatric Surgery. Front. Endocrinol. 2022, 13, 900343. [Google Scholar] [CrossRef]
- Rix, I.; Johansen, M.L.; Lund, A.; Suppli, M.P.; Chabanova, E.; van Hall, G.; Holst, J.J.; Albrechtsen, N.J.W.; Kistorp, C.; Knop, F.K. Hyperglucagonaemia and Amino Acid Alterations in Individuals with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Endocr. Connect. 2024, 13, e230161. [Google Scholar] [CrossRef]
- Tan, H.C.; Hsu, J.W.; Tai, E.S.; Chacko, S.; Kovalik, J.-P.; Jahoor, F. The Impact of Obesity-Associated Glycine Deficiency on the Elimination of Endogenous and Exogenous Metabolites via the Glycine Conjugation Pathway. Front. Endocrinol. 2024, 15, 1343738. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, Q.; Hu, C. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space. Angew. Chem. 2017, 129, 2062–2066. [Google Scholar] [CrossRef]
- Hong, Y.; Ren, J.; Zhang, X.; Wang, W.; Zeng, A.-P. Quantitative Analysis of Glycine Related Metabolic Pathways for One-Carbon Synthetic Biology. Curr. Opin. Biotechnol. 2020, 64, 70–78. [Google Scholar] [CrossRef]
- Aragón, C.; López-Corcuera, B. Structure, Function and Regulation of Glycine Neurotransporters. Eur. J. Pharmacol. 2003, 479, 249–262. [Google Scholar] [CrossRef]
- Marques, B.L.; Oliveira-Lima, O.C.; Carvalho, G.A.; de Almeida Chiarelli, R.; Ribeiro, R.I.; Parreira, R.C.; da Madeira Freitas, E.M.; Resende, R.R.; Klempin, F.; Ulrich, H. Neurobiology of Glycine Transporters: From Molecules to Behavior. Neurosci. Biobehav. Rev. 2020, 118, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S.; Gauthier-Coles, G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J. Nutr. 2022, 152, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Liu, C.; Hsu, J.W.; Chacko, S.; Minard, C.; Jahoor, F.; Sekhar, R.V. Glycine and N-Acetylcysteine (GlyNAC) Supplementation in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Insulin Resistance, Endothelial Dysfunction, Genotoxicity, Muscle Strength, and Cognition: Results of a Pilot Clinical Trial. Clin. Transl. Med. 2021, 11, e372. [Google Scholar] [CrossRef] [PubMed]
- Iji, O.T.; Ajibade, T.O.; Esan, O.O.; Awoyomi, O.V.; Oyagbemi, A.A.; Adetona, M.O.; Omobowale, T.O.; Yakubu, M.A.; Oguntibeju, O.O.; Nwulia, E. Ameliorative Effects of Glycine on Cobalt Chloride-Induced Hepato-Renal Toxicity in Rats. Anim. Model. Exp. Med. 2023, 6, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liao, X.-Y.; Pan, M.-X.; Tang, J.-C.; Chen, S.-F.; Zhang, Y.; Lu, P.-X.; Lu, L.J.; Zou, Y.-Y.; Qin, X.-P.; et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB P65/Hif-1α Signaling Pathway. J. Immunol. 2019, 202, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Qin, X.; Zhong, X.; Liu, L.; Jiang, L.; Lu, Y.; Fan, L.; He, Z.; Chen, Q. Glycine-Induced Cytoprotection Is Mediated by ERK1/2 and AKT in Renal Cells with ATP Depletion. Eur. J. Cell Biol. 2011, 90, 333–341. [Google Scholar] [CrossRef]
- Selin, A.A.; Lobysheva, N.V.; Vorontsova, O.N.; Tonshin, A.A.; Yaguzhinsky, L.S.; Nartsissov, Y.R. Mechanism Underlying the Protective Effect of Glycine in Energetic Disturbances in Brain Tissues under Hypoxic Conditions. Bull. Exp. Biol. Med. 2012, 153, 44–47. [Google Scholar] [CrossRef]
- Zhang, K.; Weinberg, J.M.; Venkatachalam, M.A.; Dong, Z. Glycine Protection of PC-12 Cells against Injury by ATP-Depletion. Neurochem. Res. 2003, 28, 893–901. [Google Scholar] [CrossRef]
- Van den Eynden, J.; Ali, S.; Horwood, N.; Carmans, S.; Brône, B.; Hellings, N.; Steels, P.; Harvey, R.; Rigo, J. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells. Front Mol. Neurosci. 2009, 2, 9. [Google Scholar] [CrossRef]
- de Paz-Lugo, P.; Lupiáñez, J.A.; Meléndez-Hevia, E. High Glycine Concentration Increases Collagen Synthesis by Articular Chondrocytes in Vitro: Acute Glycine Deficiency Could Be an Important Cause of Osteoarthritis. Amino Acids 2018, 50, 1357–1365. [Google Scholar] [CrossRef]
- Hu, X.; Guo, F. Amino Acid Sensing in Metabolic Homeostasis and Health. Endocr. Rev. 2021, 42, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Caldow, M.K.; Ham, D.J.; Trieu, J.; Chung, J.D.; Lynch, G.S.; Koopman, R. Glycine Protects Muscle Cells from Wasting in Vitro via mTORC1 Signaling. Front. Nutr. 2019, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.A. Role of mTORC1 in Mechanically Induced Increases in Translation and Skeletal Muscle Mass. J. Appl. Physiol. 2019, 127, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Blancas-Flores, G.; Alarcón-Aguilar, F.J.; García-Macedo, R.; Almanza-Pérez, J.C.; Flores-Sáenz, J.L.; Román-Ramos, R.; Ventura-Gallegos, J.L.; Kumate, J.; Zentella-Dehesa, A.; Cruz, M. Glycine Suppresses TNF-Alpha-Induced Activation of NF-κB in Differentiated 3T3-L1 Adipocytes. Eur. J. Pharmacol. 2012, 689, 270–277. [Google Scholar] [CrossRef]
- Gheller, B.J.; Blum, J.E.; Lim, E.W.; Handzlik, M.K.; Hannah Fong, E.H.; Ko, A.C.; Khanna, S.; Gheller, M.E.; Bender, E.L.; Alexander, M.S.; et al. Extracellular Serine and Glycine Are Required for Mouse and Human Skeletal Muscle Stem and Progenitor Cell Function. Mol. Metab. 2021, 43, 101106. [Google Scholar] [CrossRef]
- Sun, K.; Wu, Z.; Ji, Y.; Wu, G. Glycine Regulates Protein Turnover by Activating Protein Kinase B/Mammalian Target of Rapamycin and by Inhibiting MuRF1 and Atrogin-1 Gene Expression in C2C12 Myoblasts. J. Nutr. 2016, 146, 2461–2467. [Google Scholar] [CrossRef]
- Koopman, R.; Caldow, M.K.; Ham, D.J.; Lynch, G.S. Glycine Metabolism in Skeletal Muscle: Implications for Metabolic Homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 237–242. [Google Scholar] [CrossRef]
- Dickinson, J.M.; Drummond, M.J.; Coben, J.R.; Volpi, E.; Rasmussen, B.B. Aging Differentially Affects Human Skeletal Muscle Amino Acid Transporter Expression When Essential Amino Acids Are Ingested after Exercise. Clin. Nutr. 2013, 32, 273–280. [Google Scholar] [CrossRef]
- Bannai, M.; Kawai, N.; Ono, K.; Nakahara, K.; Murakami, N. The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front. Neurol. 2012, 3, 61. [Google Scholar] [CrossRef]
- Inagawa, K.; Hiraoka, T.; Kohda, T.; Yamadera, W.; Takahashi, M. Subjective Effects of Glycine Ingestion before Bedtime on Sleep Quality. Sleep Biol. Rhythm. 2006, 4, 75–77. [Google Scholar] [CrossRef]
- Kawai, N.; Sakai, N.; Okuro, M.; Karakawa, S.; Tsuneyoshi, Y.; Kawasaki, N.; Takeda, T.; Bannai, M.; Nishino, S. The Sleep-Promoting and Hypothermic Effects of Glycine Are Mediated by NMDA Receptors in the Suprachiasmatic Nucleus. Neuropsychopharmacology 2015, 40, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Suzuki, M.; Mieda, M.; Tsujino, N.; Roth, B.; Sakurai, T. Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice. PLoS ONE 2011, 6, e20360. [Google Scholar] [CrossRef] [PubMed]
- Fullagar, H.H.K.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and Athletic Performance: The Effects of Sleep Loss on Exercise Performance, and Physiological and Cognitive Responses to Exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef]
- Neumeister, A.; Carson, R.; Henry, S.; Planeta-Wilson, B.; Binneman, B.; Maguire, R.P.; Luckenbaugh, D.A.; D’Souza, C.; Krystal, J.H.; Frost, J.J. Cerebral Metabolic Effects of Intravenous Glycine in Healthy Human Subjects. J. Clin. Psychopharmacol. 2006, 26, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Shibui, Y.; Miwa, T.; Yamashita, M.; Chin, K.; Kodama, T. A 4-Week Repeated Dose Toxicity Study of Glycine in Rats by Gavage Administration. J. Toxicol. Pathol. 2013, 26, 405–412. [Google Scholar] [CrossRef]
- Swanson, R.A.; Ying, W.; Kauppinen, T.M. Astrocyte Influences on Ischemic Neuronal Death. Curr. Mol. Med. 2004, 4, 193–205. [Google Scholar] [CrossRef]
References | Metabolism Aspect | Role of Glycine |
---|---|---|
[13,23] | Muscle Protein Synthesis | Stimulates muscle protein synthesis, essential for muscle growth and maintenance. |
[23] | Cytoprotecting and tissue repair | Facilitates muscle repair and recovery post-exercise or injury. |
[33] | Anti-Inflammatory Effects | Reduces inflammation, beneficial in conditions like arthritis and muscle soreness. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Jiménez, A.; Hernández-Torres, R.P.; Hernández-Ontiveros, D.A.; Ortiz-Ortiz, M.; López-Fregoso, R.J.; Martínez-Sanz, J.M.; Rodríguez-Uribe, G.; Hernández-Lepe, M.A. An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery. Sports 2024, 12, 265. https://doi.org/10.3390/sports12100265
Ramos-Jiménez A, Hernández-Torres RP, Hernández-Ontiveros DA, Ortiz-Ortiz M, López-Fregoso RJ, Martínez-Sanz JM, Rodríguez-Uribe G, Hernández-Lepe MA. An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery. Sports. 2024; 12(10):265. https://doi.org/10.3390/sports12100265
Chicago/Turabian StyleRamos-Jiménez, Arnulfo, Rosa Patricia Hernández-Torres, David Alfredo Hernández-Ontiveros, Melinna Ortiz-Ortiz, Reymond Josué López-Fregoso, José Miguel Martínez-Sanz, Genaro Rodríguez-Uribe, and Marco Antonio Hernández-Lepe. 2024. "An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery" Sports 12, no. 10: 265. https://doi.org/10.3390/sports12100265
APA StyleRamos-Jiménez, A., Hernández-Torres, R. P., Hernández-Ontiveros, D. A., Ortiz-Ortiz, M., López-Fregoso, R. J., Martínez-Sanz, J. M., Rodríguez-Uribe, G., & Hernández-Lepe, M. A. (2024). An Update of the Promise of Glycine Supplementation for Enhancing Physical Performance and Recovery. Sports, 12(10), 265. https://doi.org/10.3390/sports12100265