Testing in Football: A Narrative Review
Abstract
:1. Introduction
2. Literature Search
3. Anthropometric Testing
3.1. Anthropometry
3.2. Body Composition
4. Physiological Capacity Testing
4.1. Aerobic Capacity
4.2. Linear Speed
4.3. Muscle Strength
4.4. Muscle Power
4.5. Repeated Sprint Ability
4.6. Agility
5. Biochemical Testing
5.1. Muscle Damage Markers
5.2. Inflammatory Markers
5.3. Immune Markers
5.4. Endocrine Markers
5.5. Oxidative Damage Markers
6. Psychological Testing
6.1. Mood
6.2. Perceived Recovery
6.3. Perceived Return-to-Play Readiness
7. Injury Risk Testing
7.1. Movement Competency
7.2. Strength, Flexibility, Range of Motion
7.3. Balance
7.4. Landing Mechanics
7.5. Biomechanics
8. Football-Specific Skills Testing
8.1. Dribbling Performance
8.2. Passing and Shooting Accuracy
8.3. Match Play Simulation
9. Genetic Testing
10. Practical Considerations
11. Limitations
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williams, A.M.; Reilly, T. Talent identification and development in soccer. J. Sports Sci. 2000, 18, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Bangsbo, J. Fitness Training in Football: A Scientific Approach; August Krogh Institute, University of Copenhagen: Copenhagen, Denmark, 1994; 336p. [Google Scholar]
- Gravina, L.; Gil, S.M.; Ruiz, F.; Zubero, J.; Gil, J.; Irazusta, J. Anthropometric and physiological differences between first team and reserve soccer players aged 10-14 years at the beginning and end of the season. J. Strength Cond. Res. 2008, 22, 1308–1314. [Google Scholar] [CrossRef]
- Nevill, A.; Holder, R.; Watts, A. The changing shape of “successful” professional footballers. J. Sports Sci. 2009, 27, 419–426. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004; 712p. [Google Scholar]
- Figueiredo, A.J.; Coelho, E.; Silva, M.J.; Cumming, S.P.; Malina, R.M. Size and maturity mismatch in youth soccer players 11- to 14-years-old. Pediatr. Exerc. Sci. 2010, 22, 596–612. [Google Scholar] [CrossRef] [PubMed]
- Towlson, C.; Cobley, S.; Midgley, A.W.; Garrett, A.; Parkin, G.; Lovell, R. Relative Age, Maturation and Physical Biases on Position Allocation in Elite-Youth Soccer. Int. J. Sports Med. 2017, 38, 201–209. [Google Scholar] [CrossRef]
- Wattie, N.; Cobley, S.; Baker, J. Towards a unified understanding of relative age effects. J. Sports Sci. 2008, 26, 1403–1409. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Khamis, H.J.; Roche, A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics 1994, 94, 504–507. [Google Scholar]
- Salter, J.; Cumming, S.; Hughes, J.D.; De Ste Croix, M. Estimating somatic maturity in adolescent soccer players: Methodological comparisons. Int. J. Sports Sci. Coach. 2022, 17, 11–17. [Google Scholar] [CrossRef]
- Mills, K.; Baker, D.; Pacey, V.; Wollin, M.; Drew, M.K. What is the most accurate and reliable methodological approach for predicting peak height velocity in adolescents? A systematic review. J. Sci. Med. Sport. 2017, 20, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Coelho E Silva, M.J.; Figueiredo, A.J.; Carling, C.; Beunen, G.P. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players. J. Sports Sci. 2012, 30, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Salter, J.; De Ste Croix, M.B.A.; Hughes, J.D.; Weston, M.; Towlson, C. Monitoring Practices of Training Load and Biological Maturity in UK Soccer Academies. Int. J. Sports Physiol. Perform. 2021, 16, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.P.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body composition assessment of English Premier League soccer players: A comparative DXA analysis of first team, U21 and U18 squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef]
- Carling, C.; Orhant, E. Variation in body composition in professional soccer players: Interseasonal and intraseasonal changes and the effects of exposure time and player position. J. Strength Cond. Res. 2010, 24, 1332–1339. [Google Scholar] [CrossRef]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñónez-Gastélum, C.M.; Plascencia-Aguilera, L.P.; Arana-Nuño, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and Body Composition Profile of Young Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 1911–1923. [Google Scholar] [CrossRef]
- Anderson, L.; Close, G.L.; Konopinski, M.; Rydings, D.; Milsom, J.; Hambly, C.; Speakman, J.R.; Drust, B.; Morton, J.P. Case Study: Muscle Atrophy, Hypertrophy, and Energy Expenditure of a Premier League Soccer Player During Rehabilitation From Anterior Cruciate Ligament Injury. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 559–566. [Google Scholar] [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Lacome, M.; Rodriguez, C.; Tinsley, G.M. Tracking Body Composition Over a Competitive Season in Elite Soccer Players Using Laboratory- and Field-Based Assessment Methods. J. Strength Cond. Res. 2024, 38, e104–e115. [Google Scholar] [CrossRef] [PubMed]
- Kobal, R.; Loturco, I.; Gil, S.; Cal Abad, C.C.; Cuniyochi, R.; Barroso, R.; Tricoli, V. Comparison of physical performance among Brazilian elite soccer players of different age-categories. J. Sports Med. Phys. Fit. 2016, 56, 376–382. [Google Scholar]
- Hoppe, M.W.; Barnics, V.; Freiwald, J.; Baumgart, C. Contrary to endurance, power associated capacities differ between different aged and starting-nonstarting elite junior soccer players. PLoS ONE 2020, 15, e0232118. [Google Scholar] [CrossRef] [PubMed]
- Asimakidis, N.D.; Bishop, C.J.; Beato, M.; Mukandi, I.N.; Kelly, A.L.; Weldon, A.; Turner, A.N. A survey into the current fitness testing practices of elite male soccer practitioners: From assessment to communicating results. Front. Physiol. 2024, 15, 1376047. [Google Scholar] [CrossRef]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Tumilty, D. Physiological characteristics of elite soccer players. Sports Med. 1993, 16, 80–96. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisloff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Svensson, M.; Drust, B. Testing soccer players. J. Sports Sci. 2005, 23, 601–618. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Pedisic, Z. Test-retest reliability of the 30-15 Intermittent Fitness Test: A systematic review. J. Sport. Health Sci. 2021, 10, 413–418. [Google Scholar] [CrossRef]
- Labsy, Z.; Collomp, K.; Frey, A.; De Ceaurriz, J. Assessment of maximal aerobic velocity in soccer players by means of an adapted Probst field test. J. Sports Med. Phys. Fit. 2004, 44, 375–382. [Google Scholar]
- Balsom, P. Evaluation of physical performance. In Handbook of Sports Medicine and Science–Football (Soccer); Ekblom, B., Ed.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 111–116. [Google Scholar]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Helgerud, J.; Hoff, J. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of Injury Prevention Programs that Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 907–916. [Google Scholar] [CrossRef]
- van Dyk, N.; Witvrouw, E.; Bahr, R. Interseason variability in isokinetic strength and poor correlation with Nordic hamstring eccentric strength in football players. Scand. J. Med. Sci. Sports 2018, 28, 1878–1887. [Google Scholar] [CrossRef]
- Bakken, A.; Targett, S.; Bere, T.; Eirale, C.; Farooq, A.; Mosler, A.B.; Tol, J.L.; Whiteley, R.; Khan, K.M.; Bahr, R. Muscle Strength Is a Poor Screening Test for Predicting Lower Extremity Injuries in Professional Male Soccer Players: A 2-Year Prospective Cohort Study. Am. J. Sports Med. 2018, 46, 1481–1491. [Google Scholar] [CrossRef]
- Namazi, P.; Zarei, M.; Hovanloo, F.; Abbasi, H. The association between the isokinetic muscle strength and lower extremity injuries in young male football players. Phys. Ther. Sport. 2019, 39, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.; Almåsbakk, B. The effects of maximum strength training on throwing velocity and muscle strength in female team-handball players. J. Strength. Cond. Res. 1995, 9, 255–258. [Google Scholar]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Paul, D.J.; Nassis, G.P. Testing strength and power in soccer players: The application of conventional and traditional methods of assessment. J. Strength. Cond. Res. 2015, 29, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Enright, K.; Morton, J.; Iga, J.; Lothian, D.; Roberts, S.; Drust, B. Reliability of “in-season” fitness assessments in youth elite soccer players: A working model for practitioners and coaches. Sci. Med. Football 2018, 2, 177–183. [Google Scholar] [CrossRef]
- Dugdale, J.H.; Arthur, C.A.; Sanders, D.; Hunter, A.M. Reliability and validity of field-based fitness tests in youth soccer players. Eur. J. Sport. Sci. 2019, 19, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Cook, C.C.; Kilduff, L.P.; Milanović, Z.; James, N.; Sporiš, G.; Fiorentini, B.; Fiorentini, F.; Turner, A.; Vučković, G. Relationship between repeated sprint ability and aerobic capacity in professional soccer players. Sci. World J. 2013, 2013, 952350. [Google Scholar] [CrossRef]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Reilly, T.; Cabri, J.; Araújo, D. Differences Between Football Players’ Sprint Test Performance Across Different Levels of Competition; Science and Football V; Routledge: London, UK, 2005; pp. 140–143. [Google Scholar]
- Reilly, T.; Doran, D. Fitness Assessment; Science and Soccer; Routledge: London, UK, 2003; pp. 29–54. [Google Scholar]
- Ja, D. The 505 test: A test for agility in horizontal plane. Aust. J. Sci. Med. Sport 1985, 17, 15–18. [Google Scholar]
- Altmann, S.; Neumann, R.; Ringhof, S.; Rumpf, M.C.; Woll, A. Soccer-Specific Agility: Reliability of a Newly Developed Test and Correlates of Performance. J. Strength Cond. Res. 2022, 36, 1410–1416. [Google Scholar] [CrossRef]
- Krolo, A.; Gilic, B.; Foretic, N.; Pojskic, H.; Hammami, R.; Spasic, M.; Uljevic, O.; Versic, S.; Sekulic, D. Agility Testing in Youth Football (Soccer)Players; Evaluating Reliability, Validity, and Correlates of Newly Developed Testing Protocols. Int. J. Environ. Res. Public Health 2020, 17, 294. [Google Scholar] [CrossRef]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal training-load quantification in elite English premier league soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef]
- Pillay, L.; Burgess, D.; van Rensburg, D.C.J.; Kerkhoffs, G.M.; Gouttebarge, V. The congested International Match Calendar in football: Views of 1055 professional male players. BMC Sports Sci. Med. Rehabil. 2022, 14, 200. [Google Scholar] [CrossRef]
- Thorpe, R.T.; Strudwick, A.J.; Buchheit, M.; Atkinson, G.; Drust, B.; Gregson, W. Tracking Morning Fatigue Status Across In-Season Training Weeks in Elite Soccer Players. Int. J. Sports Physiol. Perform. 2016, 11, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in soccer: Part I—Post-match fatigue and time course of recovery. Sports Med. 2012, 42, 997–1015. [Google Scholar] [CrossRef] [PubMed]
- Greig, M.; Siegler, J.C. Soccer-specific fatigue and eccentric hamstrings muscle strength. J. Athl. Train. 2009, 44, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castillo, Í.M.; Rueda, R.; Bouzamondo, H.; López-Chicharro, J.; Mihic, N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front. Physiol. 2023, 14, 1167449. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef]
- Nedelec, M.; Wisloff, U.; McCall, A.; Berthoin, S.; Dupont, G. Recovery after an intermittent test. Int. J. Sports Med. 2013, 34, 554–558. [Google Scholar] [CrossRef]
- Byrne, C.; Eston, R. The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J. Sports Sci. 2002, 20, 417–425. [Google Scholar] [CrossRef]
- Twist, C.; Eston, R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur. J. Appl. Physiol. 2005, 94, 652–658. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, S139–S147. [Google Scholar] [CrossRef]
- Heisterberg, M.F.; Fahrenkrug, J.; Krustrup, P.; Storskov, A.; Kjær, M.; Andersen, J.L. Extensive monitoring through multiple blood samples in professional soccer players. J. Strength Cond. Res. 2013, 27, 1260–1271. [Google Scholar] [CrossRef]
- Djaoui, L.; Haddad, M.; Chamari, K.; Dellal, A. Monitoring training load and fatigue in soccer players with physiological markers. Physiol. Behav. 2017, 181, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Skorski, S.; Pitsch, W.; Barth, V.; Walter, M.; Pfeiffer, M.; Ferrauti, A.; Kellmann, M.; Hecksteden, A.; Meyer, T. Individualised reference ranges for markers of muscle recovery assessment in soccer. Eur. J. Sport Sci. 2023, 23, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Heisterberg, M.F.; Fahrenkrug, J.; Andersen, J.L. Multiple blood samples in elite soccer players: Is it worthwhile? J. Sports Sci. 2014, 32, 1324–1327. [Google Scholar] [CrossRef]
- Brancaccio, P.; Maffulli, N.; Buonauro, R.; Limongelli, F.M. Serum enzyme monitoring in sports medicine. Clin. Sports Med. 2008, 27, 1–18. [Google Scholar] [CrossRef]
- Gunnarsson, T.P.; Bendiksen, M.; Bischoff, R.; Christensen, P.M.; Lesivig, B.; Madsen, K.; Stephens, F.; Greenhaff, P.; Krustrup, P.; Bangsbo, J. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand. J. Med. Sci. Sports. 2013, 23, 508–515. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Montagnana, M.; Salvagno, G.L.; Banfi, G.; Guidi, G.C. Significant variation of traditional markers of liver injury after a half-marathon run. Eur. J. Intern. Med. 2011, 22, e36–e38. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Souglis, A.; Bogdanis, G.C.; Giannopoulou, I.; Papadopoulos, C.; Apostolidis, N. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res. Sports Med. 2015, 23, 59–72. [Google Scholar] [CrossRef]
- Romagnoli, M.; Sanchis-Gomar, F.; Alis, R.; Risso-Ballester, J.; Bosio, A.; Graziani, R.L.; Rampinini, E. Changes in muscle damage, inflammation, and fatigue-related parameters in young elite soccer players after a match. J. Sports Med. Phys. Fit. 2016, 56, 1198–1205. [Google Scholar]
- Mohr, M.; Draganidis, D.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Castagna, C.; Douroudos, I.; Avloniti, A.; Margeli, A.; Papassotiriou, I.; Flouris, A.D.; et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur. J. Appl. Physiol. 2016, 116, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Toft, A.D. Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 2000, 34, 246–251. [Google Scholar] [CrossRef]
- Chazaud, B. Inflammation during skeletal muscle regeneration and tissue remodeling: Application to exercise-induced muscle damage management. Immunol. Cell Biol. 2016, 94, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar] [PubMed]
- Malm, C.; Ekblom, O.; Ekblom, B. Immune system alteration in response to two consecutive soccer games. Acta Physiol. Scand. 2004, 180, 143–155. [Google Scholar] [CrossRef]
- Rico-González, M.; Pino-Ortega, J.; Clemente, F.M.; Bustamante-Hernández, N. Relationship between Training Load Management and Immunoglobulin A to Avoid Immunosuppression after Soccer Training and Competition: A Theoretical Framework Based on COVID-19 for Athletes’ Healthcare. Healthcare 2021, 9, 856. [Google Scholar] [CrossRef]
- Campbell, J.P.; Turner, J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018, 9, 648. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Treff, G.; Zügel, M.; Schumann, U.; Winkert, K.; Schneider, M.; Abendroth, D.; Steinacker, J.M. Differences in Immune Response During Competition and Preparation Phase in Elite Rowers. Front. Physiol. 2021, 12, 803863. [Google Scholar] [CrossRef]
- Haller, N.; Ehlert, T.; Schmidt, S.; Ochmann, D.; Sterzing, B.; Grus, F.; Simon, P. Circulating, Cell-Free DNA for Monitoring Player Load in Professional Football. Int. J. Sports Physiol. Perform. 2019, 14, 718–726. [Google Scholar] [CrossRef]
- Hackney, A.C.; Lane, A.R. Exercise and the Regulation of Endocrine Hormones. Prog. Mol. Biol. Transl. Sci. 2015, 135, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.E.; Zack, E.; Battaglini, C.; Viru, M.; Viru, A.; Hackney, A.C. Exercise and circulating cortisol levels: The intensity threshold effect. J. Endocrinol. Investig. 2008, 31, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Ispirlidis, I.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Michailidis, I.; Douroudos, I.; Margonis, K.; Chatzinikolaou, A.; Kalistratos, E.; Katrabasas, I.; et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin. J. Sport Med. 2008, 18, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Morgans, R.; Orme, P.; Bezuglov, E.; Di Michele, R.; Moreira, A. The Immunological and Hormonal Responses to Competitive Match-Play in Elite Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 11784. [Google Scholar] [CrossRef]
- Owen, A.L.; Djaoui, L.; Dellal, A.; Ates, O.; Mendes, B.; Lyon, C. Biochemical response comparisons of a competitive microcycle vs. Congested fixture periods in elite level European champions league soccer players. Compliment. Med. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth with Exercise. Front. Endocrinol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Kraemer, W.J.; French, D.N.; Paxton, N.J.; Häkkinen, K.; Volek, J.S.; Sebastianelli, W.J.; Putukian, M.; Newton, R.U.; Rubin, M.R.; Gómez, A.L.; et al. Changes in exercise performance and hormonal concentrations over a big ten soccer season in starters and nonstarters. J. Strength Cond. Res. 2004, 18, 121–128. [Google Scholar] [CrossRef]
- Passelergue, P.; Lac, G. Saliva cortisol, testosterone and T/C ratio variations during a wrestling competition and during the post-competitive recovery period. Int. J. Sports Med. 1999, 20, 109–113. [Google Scholar] [CrossRef]
- Saidi, K.; Ben Abderrahman, A.; Boullosa, D.; Dupont, G.; Hackney, A.C.; Bideau, B.; Pavillon, T.; Granacher, U.; Zouhal, H. The Interplay Between Plasma Hormonal Concentrations, Physical Fitness, Workload and Mood State Changes to Periods of Congested Match Play in Professional Soccer Players. Front. Physiol. 2020, 11, 835. [Google Scholar] [CrossRef]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Bloomer, R.J. Effect of exercise on oxidative stress biomarkers. Adv. Clin. Chem. 2008, 46, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.A.; Appell, H.J.; Carvalho, F.; Bastos, M.L.; Soares, J.M. Endothelium-derived oxidative stress may contribute to exercise-induced muscle damage. Int. J. Sports Med. 1993, 14, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Goldfarb, A.H.; Rescino, M.H.; Hegde, S.; Patrick, S.; Apperson, K. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med. Sci. Sports Exerc. 2002, 34, 443–448. [Google Scholar] [CrossRef]
- Smith, M.A.; Reid, M.B. Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir. Physiol. Neurobiol. 2006, 151, 229–241. [Google Scholar] [CrossRef]
- Ascensão, A.; Rebelo, A.; Oliveira, E.; Marques, F.; Pereira, L.; Magalhães, J. Biochemical impact of a soccer match - analysis of oxidative stress and muscle damage markers throughout recovery. Clin. Biochem. 2008, 41, 841–851. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Chatzinikolaou, A.; Douroudos, I.I.; Nikolaidis, M.G.; Kyparos, A.; Margonis, K.; Michailidis, Y.; Vantarakis, A.; Taxildaris, K.; Katrabasas, I.; et al. Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J. Strength Cond. Res. 2010, 24, 3278–3286. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Ascensão, A.; Marques, F.; Seabra, A.; Rebelo, A.; Magalhães, J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur. J. Appl. Physiol. 2013, 113, 2193–2201. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent identification and development in male football: A systematic review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Van Yperen, N.W. Why some make it and others do not: Identifying psychological factors that predict career success in professional adult soccer. Sport Psychol. 2009, 23, 317–329. [Google Scholar] [CrossRef]
- Holt, N.L.; Dunn, J.G. Toward a grounded theory of the psychosocial competencies and environmental conditions associated with soccer success. J. Appl. Sport Psychol. 2004, 16, 199–219. [Google Scholar] [CrossRef]
- Selmi, O.; Ouergui, I.; Muscella, A.; My, G.; Marsigliante, S.; Nobari, H.; Suzuki, K.; Bouassida, A. Monitoring psychometric states of recovery to improve performance in soccer players: A brief review. Int. J. Environ. Res. Public Health 2022, 19, 9385. [Google Scholar] [CrossRef] [PubMed]
- Moalla, W.; Fessi, M.S.; Farhat, F.; Nouira, S.; Wong, D.P.; Dupont, G. Relationship between daily training load and psychometric status of professional soccer players. Res. Sports Med. 2016, 24, 387–394. [Google Scholar] [CrossRef]
- Selmi, O.; Marzouki, H.; Ouergui, I.; Ben Khalifa, W.; Bouassida, A. Influence of intense training cycle and psychometric status on technical and physiological aspects performed during the small-sided games in soccer players. Res. Sports Med. 2018, 26, 401–412. [Google Scholar] [CrossRef]
- Buchheit, M.; Racinais, S.; Bilsborough, J.; Bourdon, P.; Voss, S.; Hocking, J.; Cordy, J.; Mendez-Villanueva, A.; Coutts, A.J. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J. Sci. Med. Sport 2013, 16, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Coutts, A.J.; Merlini, M.; Deprez, D.; Lenoir, M.; Marcora, S.M. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance. Med. Sci. Sports. Exerc. 2016, 48, 267–276. [Google Scholar] [CrossRef]
- Schmikli, S.L.; Brink, M.; De Vries, W.; Backx, F. Can we detect non-functional overreaching in young elite soccer players and middle-long distance runners using field performance tests? Br. J. Sports Med. 2011, 45, 631–636. [Google Scholar] [CrossRef]
- Selmi, O.; Ouergui, I.; Castellano, J.; Levitt, D.; Bouassida, A. Effect of an intensified training period on well-being indices, recovery and psychological aspects in professional soccer players. Eur. Rev. Appl. Psychol. 2020, 70, 100603. [Google Scholar] [CrossRef]
- Hooper, S.L.; Mackinnon, L.T.; Howard, A.; Gordon, R.D.; Bachmann, A.W. Markers for monitoring overtraining and recovery. Med. Sci. Sports Exerc. 1995, 27, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Fessi, M.S.; Nouira, S.; Dellal, A.; Owen, A.; Elloumi, M.; Moalla, W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res. Sports Med. 2016, 24, 375–386. [Google Scholar] [CrossRef]
- Kenttä, G.; Hassmén, P. Overtraining and recovery: A conceptual model. Sports Med. 1998, 26, 1–16. [Google Scholar] [CrossRef]
- Howle, K.; Waterson, A.; Duffield, R. Recovery profiles following single and multiple matches per week in professional football. Eur. J. Sport Sci. 2019, 19, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Kallus, K.W. Recovery-Stress Questionnaire for Athletes: User Manual; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Coutts, A.J.; Reaburn, P. Monitoring changes in rugby league players’ perceived stress and recovery during intensified training. Percept. Mot. Skills 2008, 106, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Mäestu, J.; Purge, P.; Jürimäe, T. Changes in stress and recovery after heavy training in rowers. J. Sci. Med. Sport 2004, 7, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Brink, M.S.; Visscher, C.; Coutts, A.J.; Lemmink, K.A. Changes in perceived stress and recovery in overreached young elite soccer players. Scand. J. Med. Sci. Sports 2012, 22, 285–292. [Google Scholar] [CrossRef]
- Brink, M.S.; Visscher, C.; Arends, S.; Zwerver, J.; Post, W.J.; Lemmink, K.A. Monitoring stress and recovery: New insights for the prevention of injuries and illnesses in elite youth soccer players. Br. J. Sports Med. 2010, 44, 809–815. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. A systematic review of the psychological factors associated with returning to sport following injury. Br. J. Sports Med. 2013, 47, 1120–1126. [Google Scholar] [CrossRef]
- Clement, D.; Arvinen-Barrow, M.; Fetty, T. Psychosocial responses during different phases of sport-injury rehabilitation: A qualitative study. J. Athl. Train. 2015, 50, 95–104. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Ruiz-Pérez, I.; Garcia-Gómez, A.; Vera-Garcia, F.J.; Croix, M.D.S.; Myer, G.D.; Ayala, F. Epidemiology of injuries in professional football: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 711–718. [Google Scholar] [CrossRef]
- Walker, N.; Thatcher, J.; Lavallee, D. A preliminary development of the Re-Injury Anxiety Inventory (RIAI). Phys. Ther. Sport 2010, 11, 23–29. [Google Scholar] [CrossRef]
- Glazer, D.D. Development and preliminary validation of the Injury-Psychological Readiness to Return to Sport (I-PRRS) scale. J. Athl. Train. 2009, 44, 185–189. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A.; Lambros, C. Development and preliminary validation of a scale to measure the psychological impact of returning to sport following anterior cruciate ligament reconstruction surgery. Phys. Ther. Sport 2008, 9, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.; de Baranda, P.S.; Ortega, E.; Contreras, O.; Olmedilla, A. Design and validation of a questionnaire on the perception of the athlete regarding his return to training after injury. Rev. Psicol. Deporte 2014, 23, 479–487. [Google Scholar]
- Gómez-Piqueras, P.; Ardern, C.; Prieto-Ayuso, A.; Robles-Palazón, F.J.; Cejudo, A.; Sainz de Baranda, P.; Olmedilla, A. Psychometric analysis and effectiveness of the Psychological Readiness of Injured Athlete to Return to Sport (PRIA-RS) questionnaire on injured soccer players. Int. J. Environ. Res. Public Health 2020, 17, 1536. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Piqueras, P.; Ruiz-Barquín, R.; Olmedilla, A. Translation and adaptation to English of a questionnaire to determine the psychological readiness of the injured football player. Rev. Psicol. Deporte 2019, 29, 39–48. [Google Scholar]
- Parry, L.; Drust, B. Is injury the major cause of elite soccer players being unavailable to train and play during the competitive season? Phys. Ther. Sport 2006, 7, 58–64. [Google Scholar] [CrossRef]
- Larruskain, J.; Lekue, J.A.; Martin-Garetxana, I.; Barrio, I.; McCall, A.; Gil, S.M. Injuries are negatively associated with player progression in an elite football academy. Sci. Med. Football 2022, 6, 405–414. [Google Scholar] [CrossRef]
- McCall, A.; Carling, C.; Davison, M.; Nedelec, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br. J. Sports Med. 2015, 49, 583–589. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef]
- Hall, E.C.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Baumert, P.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. An injury audit in high-level male youth soccer players from English, Spanish, Uruguayan and Brazilian academies. Phys. Ther. Sport 2020, 44, 53–60. [Google Scholar] [CrossRef]
- Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A. Which screening tools can predict injury to the lower extremities in team sports? A systematic review. Sports Med. 2012, 42, 791–815. [Google Scholar] [CrossRef]
- McCall, A.; Carling, C.; Nedelec, M.; Davison, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Risk factors, testing and preventative strategies for non-contact injuries in professional football: Current perceptions and practices of 44 teams from various premier leagues. Br. J. Sports Med. 2014, 48, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Jimenez, P.; Oliver, J.L.; Lloyd, R.S. Injury prevention in male youth soccer: Current practices and perceptions of practitioners working at elite English academies. J. Sports Sci. 2018, 36, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, N.A.; Smuin, D.; Onks, C.A.; Silvis, M.L.; Dhawan, A. Reliability, validity, and injury predictive value of the functional movement screen: A systematic review and meta-analysis. Am. J. Sports Med. 2017, 45, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Dorrel, B.S.; Long, T.; Shaffer, S.; Myer, G.D. Evaluation of the Functional Movement Screen as an Injury Prediction Tool Among Active Adult Populations: A Systematic Review and Meta-analysis. Sports Health. 2015, 7, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Moran, R.W.; Schneiders, A.G.; Mason, J.; Sullivan, S.J. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? A systematic review with meta-analysis. Br. J. Sports Med. 2017, 51, 1661–1669. [Google Scholar] [CrossRef]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional Movement Screening: The Use of Fundamental Movements as an Assessment of Function-Part 1. Int. J. Sports Phys. Ther. 2014, 9, 396. [Google Scholar]
- Rusling, C.; Edwards, K.; Bhattacharya, A.; Reed, A.; Irwin, S.; Boles, A.; Potts, A.; Hodgson, L. The Functional Movement Screening Tool Does Not Predict Injury in Football. Prog. Orthop. Sci. 2015, 1, 41–46. [Google Scholar] [CrossRef]
- Meurer, M.C.; Silva, M.F.; Baroni, B.M. Strategies for Injury Prevention in Brazilian Football: Perceptions of Physiotherapists and Practices of Premier League Teams. Phys. Ther. Sport 2017, 28, 1–8. [Google Scholar] [CrossRef]
- Dauty, M.; Potiron-Josse, M.; Rochcongar, P. Consequences and Prediction of Hamstring Muscle Injury with Concentric and Eccentric Isokinetic Parameters in Elite Soccer Players. Ann. Readapt. Med. Phys. 2003, 46, 601–606. [Google Scholar] [CrossRef]
- Croisier, J.-L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.-M. Strength Imbalances and Prevention of Hamstring Injury in Professional Soccer Players: A Prospective Study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Risk Factors for Injuries in Football. Am. J. Sports Med. 2004, 32 (Suppl. S1), 5–16. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Barnes, C.A.; Portas, M.D. Factors Associated with Increased Propensity for Hamstring Injury in English Premier League Soccer Players. J. Sci. Med. Sport 2010, 13, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic Risk Factors for Acute Ankle Injuries among Male Soccer Players: A Prospective Cohort Study. Scand. J. Med. Sci. Sports 2010, 20, 403–410. [Google Scholar] [CrossRef]
- Bennell, K.; Tully, E.; Harvey, N. Does the toe-touch test predict hamstring injury in Australian Rules footballers? Aust. J. Physiother. 1999, 45, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Gabbe, B.J.; Finch, C.F.; Bennell, K.L.; Wajswelner, H. Risk factors for hamstring injuries in community level Australian football. Br. J. Sports Med. 2005, 39, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Alvares, J.B.; Dornelles, M.P.; Fritsch, C.G.; de Lima-E-Silva, F.X.; Medeiros, T.M.; Severo-Silveira, L.; Marques, V.B.; Baroni, B.M. Prevalence of Hamstring Strain Injury Risk Factors in Professional and Under-20 Male Football (Soccer) Players. J. Sport Rehabil. 2020, 29, 339–345. [Google Scholar] [CrossRef] [PubMed]
- McCunn, R.; Aus der Fünten, K.; Govus, A.; Julian, R.; Schimpchen, J.; Meyer, T. The intra- and inter-rater reliability of the soccer injury movement screen (SIMS). Int. J. Sports Phys. Ther. 2017, 12, 53–66. [Google Scholar]
- McCunn, R.; Aus der Fünten, K.; Whalan, M.; Sampson, J.A.; Meyer, T. Soccer Injury Movement Screen (SIMS) Composite Score Is Not Associated with Injury Among Semiprofessional Soccer Players. J. Orthop. Sports Phys. Ther. 2018, 48, 630–636. [Google Scholar] [CrossRef]
- Hertel, J.; Miller, S.J.; Denegar, C.R. Intratester and Intertester Reliability during the Star Excursion Balance Tests. J. Sport Rehabil. 2000, 9, 104–116. [Google Scholar] [CrossRef]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Sklempe Kokic, I.; Petric, K.; Kuna, D.; Jelica, S.; Kokic, T. Star Excursion Balance Test as a Predictor of Musculoskeletal Injury and Lower Back Pain in Non-Professional Soccer Players. Sports 2023, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Nagamoto, H.; Yaguchi, H.; Takahashi, H. History of Ankle Sprain Affect the Star Excursion Balance Test Among Youth Football Players. Foot Ankle Surg. 2021, 27, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The Reliability of an Instrumented Device for Measuring Components of the Star Excursion Balance Test. N. Am. J. Sports Phys. Ther. 2009, 4, 92. [Google Scholar]
- Gonell, A.C.; Romero, J.A.P.; Soler, L.M. Relationship Between the Y Balance Test Scores and Soft Tissue Injury Incidence in a Soccer Team. Int. J. Sports Phys. Ther. 2015, 10, 955. [Google Scholar]
- Read, P.J.; Oliver, J.L.; Myer, G.D.; Farooq, A.; Croix, M.D.S.; Lloyd, R.S. Utility of the Anterior Reach Y-BALANCE Test as an Injury Risk Screening Tool in Elite Male Youth Soccer Players. Phys. Ther. Sport 2020, 45, 103–110. [Google Scholar] [CrossRef]
- Rochcongar, P.; Laboute, E.; Jan, J.; Carling, C. Ruptures of the Anterior Cruciate Ligament in Soccer. Int. J. Sports Med. 2009, 30, 372–378. [Google Scholar] [CrossRef]
- Kessler, M.; Behrend, H.; Henz, S.; Stutz, G.; Rukavina, A.; Kuster, M. Function, Osteoarthritis and Activity After ACL-Rupture: 11 Years Follow-Up Results of Conservative Versus Reconstructive Treatment. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 442–448. [Google Scholar] [CrossRef]
- Smith, H.C.; Johnson, R.J.; Shultz, S.J.; Tourville, T.; Holterman, L.A.; Slauterbeck, J.; Vacek, P.M.; Beynnon, B.D. A Prospective Evaluation of the Landing Error Scoring System (LESS) as a Screening Tool for Anterior Cruciate Ligament Injury Risk. Am. J. Sports Med. 2012, 40, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a Screening Tool for an Anterior Cruciate Ligament Injury–Prevention Program in Elite-Youth Soccer Athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, T.; Klein, C.; Hoenig, T.; Pietzonka, M.; Bloch, H.; Edouard, P.; Hollander, K. Hamstring Injury Patterns in Professional Male Football (Soccer): A Systematic Video Analysis of 52 Cases. Br. J. Sports Med. 2022, 56, 165–171. [Google Scholar] [CrossRef]
- Kalema, R.N.; Duhig, S.J.; Williams, M.D.; Donaldson, A.; Shield, A.J. Sprinting Technique and Hamstring Strain Injuries: A Concept Mapping Study. J. Sci. Med. Sport 2022, 25, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, E.; De Ruiter, C.J.; Bastiaansen, B.J.; Goedhart, E.A.; Brink, M.S.; Van der Helm, F.C.; Savelsbergh, G.J. Associations Between Hamstring Fatigue and Sprint Kinematics During a Simulated Football (Soccer) Match. Med. Sci. Sports Exerc. 2021, 53, 2586. [Google Scholar] [CrossRef]
- Bramah, C.; Tawiah-Dodoo, J.; Rhodes, S.; Elliott, J.D.; Dos Santos, T. The Sprint Mechanics Assessment Score: A Qualitative Screening Tool for the In-Field Assessment of Sprint Running Mechanics. Int. J. Sports Physiol. Perform. 2023, 18, 576–584. [Google Scholar] [CrossRef]
- Dos’Santos, T.; McBurnie, A.; Donelon, T.; Thomas, C.; Comfort, P.; Jones, P.A. A Qualitative Screening Tool to Identify Athletes with ‘High-Risk’ Movement Mechanics During Cutting: The Cutting Movement Assessment Score (CMAS). Phys. Ther. Sport 2019, 38, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Bisciotti, G.N.; Chamari, K.; Cena, E.; Bisciotti, A.; Corsini, A.; Volpi, P. Anterior Cruciate Ligament Injury Risk Factors in Football. J. Sports Med. Phys. Fit. 2019, 59, 1724–1738. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.; Myer, G.D.; Lloyd, R.S. Landing Kinematics in Elite Male Youth Soccer Players of Different Chronologic Ages and Stages of Maturation. J. Athl. Train. 2018, 53, 372–378. [Google Scholar] [CrossRef]
- Noyes, F.R.; Barber-Westin, S.D.; Fleckenstein, C.; Walsh, C.; West, J. The Drop-Jump Screening Test: Difference in Lower Limb Control by Gender and Effect of Neuromuscular Training in Female Athletes. Am. J. Sports Med. 2005, 33, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; de Ste Croix, M.B.; Myer, G.D.; Lloyd, R.S. Reliability of the Tuck Jump Injury Risk Screening Assessment in Elite Male Youth Soccer Players. J. Strength Cond. Res. 2016, 30, 1510–1516. [Google Scholar] [CrossRef]
- Bahr, R. Why Screening Tests to Predict Injury Do Not Work—And Probably Never Will…: A Critical Review. Br. J. Sports Med. 2016, 50, 776–780. [Google Scholar] [CrossRef]
- Hughes, T.; Sergeant, J.C.; Parkes, M.J.; Callaghan, M.J. Prognostic Factors for Specific Lower Extremity and Spinal Musculoskeletal Injuries Identified Through Medical Screening and Training Load Monitoring in Professional Football (Soccer): A Systematic Review. BMJ Open Sport Exerc. Med. 2017, 3, e000263. [Google Scholar] [CrossRef]
- Ali, A. Measuring Soccer Skill Performance: A Review. Scand. J. Med. Sci. Sports 2011, 21, 170–183. [Google Scholar]
- Ford, P.R.; Bordonau, J.L.D.; Bonanno, D.; Tavares, J.; Groenendijk, C.; Fink, C.; Gualtieri, D.; Gregson, W.; Varley, M.C.; Weston, M.; et al. A Survey of Talent Identification and Development Processes in the Youth Academies of Professional Soccer Clubs from Around the World. In Science and Football; Routledge: London, UK, 2023; pp. 73–82. [Google Scholar]
- Larkin, P.; O’Connor, D. Talent Identification and Recruitment in Youth Soccer: Recruiter’s Perceptions of the Key Attributes for Player Recruitment. PLoS ONE 2017, 12, e0175716. [Google Scholar] [CrossRef]
- Rosch, D.; Hodgson, R.; Peterson, L.; Graf-Baumann, T.; Junge, A.; Chomiak, J.; Dvorak, J. Assessment and Evaluation of Football Performance. Am. J. Sports Med. 2000, 28 (Suppl. S5), 29–39. [Google Scholar]
- Padron-Cabo, A.; Rey, E.; Perez-Ferreiros, A.; Kalen, A. Test–Retest Reliability of Skill Tests in the F-MARC Battery for Youth Soccer Players. Percept. Mot. Skills 2019, 126, 1006–1023. [Google Scholar] [CrossRef] [PubMed]
- Höner, O.; Murr, D.; Larkin, P.; Schreiner, R.; Leyhr, D. Nationwide Subjective and Objective Assessments of Potential Talent Predictors in Elite Youth Soccer: An Investigation of Prognostic Validity in a Prospective Study. Front. Sports Act. Living 2021, 3, 638227. [Google Scholar]
- Waldron, M.; Worsfold, P. Differences in the Game Specific Skills of Elite and Sub-Elite Youth Football Players: Implications for Talent Identification. Int. J. Perform. Anal. Sport 2010, 10, 9–24. [Google Scholar]
- McCalman, W.; Crowley-McHattan, Z.J.; Fransen, J.; Bennett, K.J. Skill Assessments in Youth Soccer: A Scoping Review. J. Sports Sci. 2022, 40, 667–695. [Google Scholar]
- Vandendriessche, J.B.; Vaeyens, R.; Vandorpe, B.; Lenoir, M.; Lefevre, J.; Philippaerts, R.M. Biological Maturation, Morphology, Fitness, and Motor Coordination as Part of a Selection Strategy in the Search for International Youth Soccer Players (Age 15–16 Years). J. Sports Sci. 2012, 30, 1695–1703. [Google Scholar] [CrossRef]
- Lovell, T.; Bocking, C.; Fransen, J.; Coutts, A. A Multidimensional Approach to Factors Influencing Playing Level and Position in a School-Based Soccer Programme. Sci. Med. Football 2018, 2, 237–245. [Google Scholar] [CrossRef]
- Lemmink, K.; Elferink-Gemser, M.; Visscher, C. Evaluation of the Reliability of Two Field Hockey Specific Sprint and Dribble Tests in Young Field Hockey Players. Br. J. Sports Med. 2004, 38, 138–142. [Google Scholar] [CrossRef]
- Huijgen, B.C.; Elferink-Gemser, M.T.; Post, W.; Visscher, C. Development of Dribbling in Talented Youth Soccer Players Aged 12–19 Years: A Longitudinal Study. J. Sports Sci. 2010, 28, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, B.C.; Elferink-Gemser, M.T.; Lemmink, K.A.; Visscher, C. Multidimensional Performance Characteristics in Selected and Deselected Talented Soccer Players. Eur. J. Sport Sci. 2014, 14, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, B.C.; Elferink-Gemser, M.T.; Post, W.J.; Visscher, C. Soccer Skill Development in Professionals. Int. J. Sports Med. 2009, 30, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Williams, C.; Hulse, M.; Strudwick, A.; Reddin, J.; Howarth, L.; Eldred, J.; Hirst, M.; McGregor, S. Reliability and Validity of Two Tests of Soccer Skill. J. Sports Sci. 2007, 25, 1461–1470. [Google Scholar] [CrossRef]
- Le Moal, E.; Rue, O.; Ajmol, A.; Abderrahman, B.; Hammami, M.A.; Ounis, O.B.; Kebsi, W.; Zouhal, H. Validation of the Loughborough Soccer Passing Test in Young Soccer Players. J. Strength Cond. Res. 2014, 28, 1418–1426. [Google Scholar] [CrossRef]
- McDermott, G.; Burnett, A.F.; Robertson, S.J. Reliability and Validity of the Loughborough Soccer Passing Test in Adolescent Males: Implications for Talent Identification. Int. J. Sports Sci. Coach. 2015, 10, 515–527. [Google Scholar] [CrossRef]
- Russell, M.; Benton, D.; Kingsley, M. Reliability and Construct Validity of Soccer Skills Tests That Measure Passing, Shooting, and Dribbling. J. Sports Sci. 2010, 28, 1399–1408. [Google Scholar] [CrossRef]
- Radman, I.; Wessner, B.; Bachl, N.; Ruzic, L.; Hackl, M.; Baca, A.; Markovic, G. Reliability and Discriminative Ability of a New Method for Soccer Kicking Evaluation. PLoS ONE 2016, 11, e0147998. [Google Scholar] [CrossRef]
- Alcântara, C.H.; Machado, J.C.; Teixeira, R.M.; Rossato, M.; Teixeira, A.S.; Fernandes da Silva, J. What Factors Discriminate Young Soccer Players Perceived as Promising and Less Promising by Their Coaches? Res. Q. Exerc. Sport 2023, 94, 966–974. [Google Scholar] [CrossRef]
- Bonney, N.; Berry, J.; Ball, K.; Larkin, P. Australian Football Skill-Based Assessments: A Proposed Model for Future Research. Front. Psychol. 2019, 10, 429. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Hall, E.C.R.; Brownlee, T.E.; Drust, B.; Williams, A.G.; Erskine, R.M. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int. J. Sports Med. 2023, 44, 941–960. [Google Scholar] [CrossRef] [PubMed]
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Pérusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, J.A.; Bouchard, C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995, 9, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Ding, C.; Stankovich, J.; Cicuttini, F.; Jones, G. The genetic contribution to longitudinal changes in knee structure and muscle strength: A sibpair study. Arthritis Rheum. 2005, 52, 2830–2834. [Google Scholar] [CrossRef]
- Tabor, H.K.; Risch, N.J.; Myers, R.M. Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nat. Rev. Genet. 2002, 3, 391–397. [Google Scholar] [CrossRef]
- Juffer, P.; Furrer, R.; González-Freire, M.; Santiago, C.; Verde, Z.; Serratosa, L.; Morate, F.J.; Rubio, J.C.; Martin, M.A.; Ruiz, J.R.; et al. Genotype distributions in top-level soccer players: A role for ACE? Int. J. Sports Med. 2009, 30, 387–392. [Google Scholar] [CrossRef]
- Egorova, E.S.; Borisova, A.V.; Mustafina, L.J.; Arkhipova, A.A.; Gabbasov, R.T.; Druzhevskaya, A.M.; Astratenkova, I.V.; Ahmetov, I.I. The polygenic profile of Russian football players. J. Sport. Sci. 2014, 32, 1286–1293. [Google Scholar] [CrossRef]
- Santiago, C.; González-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gómez-Gallego, F.; Lucia, A. ACTN3 genotype in professional soccer players. Br. J. Sports Med. 2008, 42, 71–73. [Google Scholar] [CrossRef]
- Massidda, M.; Mendez-Villanueva, A.; Ginevičienė, V.; Proia, P.; Drozdovska, S.B.; Dosenko, V.; Scorcu, M.; Stula, A.; Sawczuk, M.; Cięszczyk, P.; et al. Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status. Int. J. Sports Med. 2018, 39, 1028–1034. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; Rienzi, E.; Roquero, S.; Moreno, S.; Huertas, G.; Lugioratto, G.; Baumert, P.; Turner, D.C.; Lee, D.; et al. The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE 2020, 15, e0234458. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, E.M.; Coelho, D.B.; Veneroso, C.E.; Barros Coelho, E.J.; Cruz, I.R.; Morandi, R.F.; De A Pussieldi, G.; Carvalho, M.R.; Garcia, E.S.; De Paz Fernández, J.A. Effect of ACTN3 gene on strength and endurance in soccer players. J. Strength Cond. Res. 2013, 27, 3286–3292. [Google Scholar] [CrossRef]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand. J. Med. Sci. Sports. 2022, 32, 338–350. [Google Scholar] [CrossRef]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X Polymorphism Is Associated With the Incidence and Severity of Injuries in Professional Football Players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef]
- Rodas, G.; Moreno-Pérez, V.; Del Coso, J.; Florit, D.; Osaba, L.; Lucia, A. Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes 2021, 12, 769. [Google Scholar] [CrossRef] [PubMed]
- Artells, R.; Pruna, R.; Dellal, A.; Maffulli, N. Elastin: A possible genetic biomarker for more severe ligament injuries in elite soccer. A pilot study. Muscles Ligaments Tendons J. 2016, 6, 188–192. [Google Scholar] [CrossRef]
- Ficek, K.; Cieszczyk, P.; Kaczmarczyk, M.; Maciejewska-Karłowska, A.; Sawczuk, M.; Cholewinski, J.; Leonska-Duniec, A.; Stepien-Slodkowska, M.; Zarebska, A.; Stepto, N.K.; et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J. Sci. Med. Sport. 2013, 16, 396–400. [Google Scholar] [CrossRef]
- Lulińska-Kuklik, E.; Rahim, M.; Domańska-Senderowska, D.; Ficek, K.; Michałowska-Sawczyn, M.; Moska, W.; Kaczmarczyk, M.; Brzeziański, M.; Brzeziańska-Lasota, E.; Cięszczyk, P.; et al. Interactions between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J. Hum. Kinet. 2018, 62, 65–71. [Google Scholar] [CrossRef]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Calò, C.M. Influence of the COL5A1 rs12722 on musculoskeletal injuries in professional soccer players. J. Sports Med. Phys. Fit. 2015, 55, 1348–1353. [Google Scholar]
- Pruna, R.; Artells, R.; Lundblad, M.; Maffulli, N. Genetic biomarkers in non-contact muscle injuries in elite soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3311–3318. [Google Scholar] [CrossRef] [PubMed]
- Pruna, R.; Artells, R.; Ribas, J.; Montoro, B.; Cos, F.; Muñoz, C.; Rodas, G.; Maffulli, N. Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: Influence on degree of injury and recovery time. BMC Musculoskelet. Disord. 2013, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, J.; Celorrio, D.; Barrio, I.; Odriozola, A.; Gil, S.M.; Fernandez-Lopez, J.R.; Nozal, R.; Ortuzar, I.; Lekue, J.A.; Aznar, J.M. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med. Sci. Sports Exerc. 2018, 50, 361–368. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; John, G.; Semenova, E.A.; Hall, E.C.R. Genomic predictors of physical activity and athletic performance. Adv. Genet. 2024, 111, 311–408. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 41–72. [Google Scholar] [CrossRef]
- Coelho, D.B.; Pimenta, E.M.; Rosse, I.C.; de Oliveira, E.C.; Becker, L.K.; Ferreira-Júnior, J.B.; Lopes, L.M.; Carvalho, M.R.; Silami-Garcia, E. Polymorphism of the angiotensin converting enzyme gene (ACE-I/D) differentiates the aerobic and speed performance of football players. J. Sports Med. Phys. Fit. 2022, 62, 192–198. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Donnikov, A.E.; Trofimov, D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol. Sport 2014, 31, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.G.; Guilherme, J.P.; Lancha, A.H., Jr.; Ginevičienė, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar] [CrossRef]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A genome-wide association study of sprint performance in elite youth football players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Sawczuk, M.; Maciejewska-Karlowska, A.; Cieszczyk, P.; Skotarczak, B.; Ficek, K. Association of the ADRB2 Gly16Arg and Glu27Gln polymorphisms with athlete status. J. Sports Sci. 2013, 31, 1535–1544. [Google Scholar] [CrossRef]
- Rubio, J.C.; Martín, M.A.; Rabadán, M.; Gómez-Gallego, F.; San Juan, A.F.; Alonso, J.M.; Chicharro, J.L.; Pérez, M.; Arenas, J.; Lucia, A. Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? J. Appl. Physiol. 2005, 98, 2108–2112. [Google Scholar] [CrossRef]
- Fedotovskaya, O.N.; Danilova, A.A.; Akhmetov, I.I. Effect of AMPD1 gene polymorphism on muscle activity in humans. Bull. Exp. Biol. Med. 2013, 154, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Zmuda, J.M.; Cauley, J.A.; Shea, P.R.; Metter, E.J.; Hurley, B.F.; Ferrell, R.E.; Roth, S.M. Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. J. Appl. Physiol. 2005, 98, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.; Shikhova, Y.V.; Dondukovskaya, R.R.; Topanova, A.A.; Semenova, E.A.; Astratenkova, I.V.; Ahmetov, I.I. Androgen receptor gene microsatellite polymorphism is associated with muscle mass and strength in bodybuilders and power athlete status. Ann. Hum. Biol. 2021, 48, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Kleim, J.A.; Chan, S.; Pringle, E.; Schallert, K.; Procaccio, V.; Jimenez, R.; Cramer, S.C. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 2006, 9, 735–737. [Google Scholar] [CrossRef] [PubMed]
- McHughen, S.A.; Rodriguez, P.F.; Kleim, J.A.; Kleim, E.D.; Marchal Crespo, L.; Procaccio, V.; Cramer, S.C. BDNF val66met polymorphism influences motor system function in the human brain. Cereb. Cortex. 2010, 20, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Zempo, H.; Miyamoto-Mikami, E.; Kumagai, H.; Larin, A.K.; Sultanov, R.I.; Babalyan, K.A.; Zhelankin, A.V.; Tobina, T.; Shiose, K.; et al. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells 2022, 11, 3910. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Semenova, E.A.; Zempo, H.; Martins, G.L.; Lancha-Junior, A.H.; Miyamoto-Mikami, E.; Kumagai, H.; Tobina, T.; Shiose, K.; Kakigi, R.; et al. Are Genome-Wide Association Study Identified Single-Nucleotide Polymorphisms Associated with Sprint Athletic Status? A Replication Study With 3 Different Cohorts. Int. J. Sport. Physiol. Perform. 2021, 16, 489–495. [Google Scholar] [CrossRef]
- Díaz Ramírez, J.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; Ramírez de la Piscina, X.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 Gene rs558129 Polymorphism is Associated with Power Performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef]
- Zmijewski, P.; Trybek, G.; Czarny, W.; Leońska-Duniec, A. GALNTL6 Rs558129: A Novel Polymorphism for Swimming Performance? J. Hum. Kinet. 2021, 80, 199–205. [Google Scholar] [CrossRef]
- Semenova, E.A.; Miyamoto-Mikami, E.; Akimov, E.B.; Al-Khelaifi, F.; Murakami, H.; Zempo, H.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Borisov, O.V.; et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020, 120, 665–673. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Semenova, E.A.; Larin, A.K.; Yusupov, R.A.; Generozov, E.V.; Ahmetov, I.I. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes 2022, 13, 1710. [Google Scholar] [CrossRef] [PubMed]
- Papassotiropoulos, A.; Stephan, D.A.; Huentelman, M.J.; Hoerndli, F.J.; Craig, D.W.; Pearson, J.V.; Huynh, K.-D.; Brunner, F.; Corneveaux, J.; Osborne, D.; et al. Common Kibra Alleles Are Associated with Human Memory Performance. Science 2006, 314, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Kazantseva, A.V.; Enikeeva, R.F.; Davydova, Y.D.; Mustafin, R.N.; Takhirova, Z.R.; Malykh, S.B.; Lobaskova, M.M.; Tikhomirova, T.N.; Khusnutdinova, E.K. The role of the KIBRA and APOE genes in developing spatial abilities in humans. Vavilov J. Genet. Breed. 2021, 25, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Valeeva, E.V.; Yerdenova, M.B.; Datkhabayeva, G.K.; Bouzid, A.; Bhamidimarri, P.M.; Sharafetdinova, L.M.; Egorova, E.S.; Semenova, E.A.; Gabdrakhmanova, L.J.; et al. KIBRA Gene Variant Is Associated with Ability in Chess and Science. Genes 2023, 14, 204. [Google Scholar] [CrossRef]
- Willems, S.M.; Wright, D.J.; Day, F.R.; Trajanoska, K.; Joshi, P.K.; Morris, J.A.; Matteini, A.M.; Garton, F.C.; Grarup, N.; Oskolkov, N.; et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat. Commun. 2017, 8, 16015. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef]
- Kikuchi, N.; Moreland, E.; Homma, H.; Semenova, E.A.; Saito, M.; Larin, A.K.; Kobatake, N.; Yusupov, R.A.; Okamoto, T.; Nakazato, K.; et al. Genes and Weightlifting Performance. Genes 2022, 13, 25. [Google Scholar] [CrossRef]
- Massidda, M.; Flore, L.; Kikuchi, N.; Scorcu, M.; Piras, F.; Cugia, P.; Cięszczyk, P.; Tocco, F.; Calò, C.M. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: A pilot study. Eur. J. Appl. Physiol. 2021, 121, 3399–3408. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, J.P.L.F.; Bosnyák, E.; Semenova, E.A.; Szmodis, M.; Griff, A.; Móra, Á.; Almási, G.; Trájer, E.; Udvardy, A.; Kostryukova, E.S.; et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport 2021, 38, 465–474. [Google Scholar] [CrossRef]
- Ramírez de la Piscina-Viúdez, X.; Álvarez-Herms, J.; Bonilla, D.A.; Castañeda-Babarro, A.; Larruskain, J.; Díaz-Ramírez, J.; Ahmetov, I.I.; Martínez-Ascensión, A.; Kreider, R.B.; Odriozola-Martínez, A. Putative Role of MCT1 rs1049434 Polymorphism in High-Intensity Endurance Performance: Concept and Basis to Understand Possible Individualization Stimulus. Sports 2021, 9, 143. [Google Scholar] [CrossRef]
- Tikkanen, E.; Gustafsson, S.; Amar, D.; Shcherbina, A.; Waggott, D.; Ashley, E.A.; Ingelsson, E. Biological Insights into Mus-cular Strength: Genetic Findings in the UK Biobank. Sci. Rep. 2018, 8, 6451. [Google Scholar] [CrossRef] [PubMed]
- Al-Khelaifi, F.; Yousri, N.A.; Diboun, I.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Front. Genet. 2020, 11, 595. [Google Scholar] [CrossRef]
- Ahmetov, I.; Kulemin, N.; Popov, D.; Naumov, V.; Akimov, E.; Bravy, Y.; Egorova, E.; Galeeva, A.; Generozov, E.; Kostryukova, E.; et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol. Sport 2015, 32, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Malczewska-Lenczowska, J.; Orysiak, J.; Majorczyk, E.; Sitkowski, D.; Starczewski, M.; Zmijewski, P. HIF-1α and NFIA-AS2 Polymorphisms as Potential Determinants of Total Hemoglobin Mass in Endurance Athletes. J. Strength Cond. Res. 2022, 36, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gallego, F.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.I.; Lucia, A. The -786 T/C polymorphism of the NOS3 gene is associated with elite performance in power sports. Eur. J. Appl. Physiol. 2009, 107, 565–569. [Google Scholar] [CrossRef]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with athlete status in ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Gavrilov, D.N.; Astratenkova, I.V.; Druzhevskaya, A.M.; Malinin, A.V.; Romanova, E.E.; Rogozkin, V.A. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J. Physiol. Sci. 2013, 63, 79–85. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef]
- Maciejewska-Karlowska, A.; Sawczuk, M.; Cieszczyk, P.; Zarebska, A.; Sawczyn, S. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ gene and strength athlete status. PLoS ONE 2013, 8, e67172. [Google Scholar] [CrossRef]
- Lucia, A.; Gómez-Gallego, F.; Barroso, I.; Rabadán, M.; Bandrés, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Popov, D.V.; Mozhaĭskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zhurnal Im. IM Sechenova 2007, 93, 837–843. [Google Scholar]
- Yang, R.; Jin, F.; Wang, L.; Shen, X.; Guo, Q.; Song, H.; Hu, J.; Zhao, Q.; Wan, J.; Cai, M. Prediction and Identification of Power Performance Using Polygenic Models of Three Single-Nucleotide Polymorphisms in Chinese Elite Athletes. Front. Genet. 2021, 12, 726552. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Ginszt, M.; Semenova, E.A.; Massidda, M.; Huminska-Lisowska, K.; Michałowska-Sawczyn, M.; Homma, H.; Cięszczyk, P.; Okamoto, T.; Larin, A.K.; et al. Genetic profile of sports climbing athletes from three different ethnicities. Biol. Sport 2022, 39, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto-Mikami, E.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Miyachi, M.; Kawahara, T.; Fuku, N. Lack of association between genotype score and sprint/power performance in the Japanese population. J. Sci. Med. Sport 2017, 20, 98–103. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Popov, D.V.; Astratenkova, I.V.; Druzhevskaia, A.M.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. The use of molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Hum. Physiol. 2008, 34, 338–342. [Google Scholar] [CrossRef]
- Gronek, P.; Gronek, J.; Lulińska-Kuklik, E.; Spieszny, M.; Niewczas, M.; Kaczmarczyk, M.; Petr, M.; Fischerova, P.; Ahmetov, I.I.; Żmijewski, P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J. Hum. Kinet. 2018, 64, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Hakimullina, A.M.; Popov, D.V.; Lyubaeva, E.V.; Missina, S.S.; Vinogradova, O.L.; Williams, A.G.; Rogozkin, V.A. Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur. J. Appl. Physiol. 2009, 107, 95–103. [Google Scholar] [CrossRef]
- Eider, J.; Leonska-Duniec, A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Ficek, K.; Sawczyn, S. The VEGFR2 gene His472Gln polymorphism in Polish endurance athletes. Int. Sport Med. J. 2013, 14, 29–35. [Google Scholar]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef]
- Vlahovich, N.; Hughes, D.C.; Griffiths, L.R.; Wang, G.; Pitsiladis, Y.P.; Pigozzi, F.; Bachl, N.; Eynon, N. Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement. BMC Genom. 2017, 18, 5–13. [Google Scholar] [CrossRef]
- Webborn, N.; Williams, A.; McNamee, M.; Bouchard, C.; Pitsiladis, Y.; Ahmetov, I.; Ashley, E.; Byrne, N.; Camporesi, S.; Collins, M.; et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br. J. Sport. Med. 2015, 49, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Varley, I.; Patel, S.; Williams, A.G.; Hennis, P.J. The current use, and opinions of elite athletes and support staff in relation to genetic testing in elite sport within the UK. Biol. Sport. 2018, 35, 13–19. [Google Scholar] [CrossRef]
- Pitsiladis, Y.P.; Tanaka, M.; Eynon, N.; Bouchard, C.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; et al. Athlome Project Consortium: A concerted effort to discover genomic and other “omic” markers of athletic performance. Physiol. Genom. 2016, 48, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. Med. Sport Sci. 2016, 61, 55–67. [Google Scholar] [CrossRef]
- Massidda, M.; Calò, C.M.; Cięszczyk, P.; Kikuchi, N.; Ahmetov, I.I.; Williams, A.G. Genetics of Team Sports. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 105–128. [Google Scholar] [CrossRef]
- Gineviciene, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef]
Gene | Full Name | Polymorphism | Favourable Allele | Phenotype | References |
---|---|---|---|---|---|
ACE | Angiotensin I converting enzyme | I/D | D | Football player status; sprint performance of football players | [204,205,223] |
ACTN3 | Actinin alpha 3 | rs1815739 C/T | C | Football player status; CMJ performance of football players; power; testosterone levels | [205,206,209,224,225] |
ADRB2 | Adrenoceptor beta 2 | rs1042713 G/A | G | Sprint performance of football players; power | [226,227] |
ADRB2 | Adrenoceptor beta 2 | rs1042714 C/G | G | Sprint performance of football players; power | [226,227] |
AGT | Angiotensinogen | rs699 T/C | C | Football player status; sprint performance of football players | [208,226] |
AMPD1 | Adenosine Monophosphate Deaminase 1 | rs17602729 C/T | C | Power | [228,229] |
AR | Androgen Receptor | (CAG)n | ≥21 | Strength; muscle mass | [230,231] |
BDNF | Brain-Derived Neurotrophic Factor | rs6265 C/T | C | Coordination; horizontal power, acceleration, and sprint performance in football players | [208,232,233] |
CDKN1A | Cyclin-Dependent Kinase Inhibitor 1A | rs236448 A/C | C | Power | [234] |
CPNE5 | Copine V | rs3213537 G/A | G | Sprint performance of football players; power | [226,235] |
GALNTL6 | Polypeptide N-acetylgalactosaminyltransferase like 6 | rs558129 C/T | T | Power | [236,237] |
HFE | Homeostatic iron regulator | rs1799945 C/G | G | Endurance | [238] |
IGF2 | Insulin-like growth factor 2 | rs680 A/G | G | Sprint performance of football players | [226] |
IGSF3 | Immunoglobulin Superfamily Member 3 | rs699785 G/A | A | Power | [239] |
KIBRA | The kidney and brain expressed protein | rs17070145 C/T | T | Spatial ability; working memory; chess player status | [240,241,242] |
LRPPRC | Leucine-rich pentatricopeptide repeat cassette | rs10186876 A/G | A | Strength | [243,244,245] |
MCT1 | Monocarboxylate transporter 1 | rs1049434 A/T | T (major allele) | Football player status; sprint performance of football players; endurance | [207,246,247,248] |
MMS22L | Methyl methanesulfonate-sensitivity protein 22-Like | rs9320823 T/C | T | Strength | [244,245,249] |
MYBPC3 | Myosin Binding Protein C3 | rs1052373 A/G | G | Endurance | [250] |
NFIA-AS2 | NFIA antisense RNA 2 | rs1572312 C/A | C | Endurance | [251,252] |
NOS3 | Nitric oxide synthase 3 | rs2070744 T/C | T | Football player status; power | [208,253,254] |
PHACTR1 | Phosphate and actin regulator 1 | rs6905419 C/T | C | Strength | [244,245,249] |
PPARA | Peroxisome proliferator-activated receptor α | rs4253778 G/C | C | Football player status; power; strength | [205,208,255] |
PPARG | Peroxisome proliferator-activated receptor gamma | rs1801282 C/G | G | Strength | [244,256,257] |
PPARGC1A | Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha | rs8192678 G/A | G | Endurance | [258,259,260] |
TRHR | Thyrotropin-releasing hormone receptor | rs7832552 C/T | T | Power | [261,262] |
UCP2 | Uncoupling protein 2 | rs660339 C/T | T | Football player status; endurance | [205,263,264] |
VEGFR2 | Vascular endothelial growth factor receptor 2 | rs1870377 T/A | A | Endurance | [265,266] |
Testing Purpose | Selection/Talent Identification | Monitoring Growth and/or Maturation | Assessing Physiological Fitness | Assessing Sport-Specific Skill | Monitoring Health Status Including Recovery/Fatigue | Quantifying Training Adaptation | Injury Risk Screening | |
---|---|---|---|---|---|---|---|---|
Assessment Type | ||||||||
Anthropometric | ||||||||
Stature/mass (e.g., height, weight, limb lengths) | ✓ | ✓ | ||||||
Body composition (e.g., DXA scanning, skinfolds) | ✓ | ✓ | ✓ | |||||
Physical Capacity | ||||||||
Aerobic capacity (e.g., Yo-Yo tests, 30-15 Intermittent Fitness Test) | ✓ | ✓ | ✓ | ✓ | ||||
Muscle strength (e.g., isokinetic dynamometry, adductor squeeze, isometric mid-thigh pull) | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Muscle power/reactive strength (e.g., vertical/drop jump tests, single-leg jump/hop tests) | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Linear speed (e.g., sprint tests over 10, 20, 30 m) | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Agility (e.g., 505 Test, Illinois Agility Test, Arrowhead Agility Test) | ✓ | ✓ | ✓ | ✓ | ||||
Repeated sprint ability (e.g., 6–8 repetitions of 25–40 m) | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Biochemical | ||||||||
Exercise tolerance markers (e.g., blood lactate, lactate threshold) | ✓ | ✓ | ||||||
Muscle damage markers (e.g., CK, LDH) | ✓ | ✓ | ✓ | |||||
Inflammatory markers(e.g., IL-6, TNF-α, CRP) | ✓ | ✓ | ||||||
Immune markers (e.g., WBC count, IgA, cfDNA) | ✓ | ✓ | ||||||
Endocrine markers (e.g., cortisol, testosterone, cortisol/testosterone ratio) | ✓ | ✓ | ||||||
Oxidative markers (e.g., MDA, UA, SOD, TBARS) | ✓ | ✓ | ||||||
Psychological | ||||||||
Mood state questionnaires (e.g., POMS) | ✓ | |||||||
Recovery questionnaires (e.g., Hooper Index, TQR, RESTQ-Sport) | ✓ | ✓ | ✓ | |||||
Return-to-play questionnaires (e.g., RIAI, I-PRRS, ACL-RSI, PRIA-RS) | ✓ | ✓ | ✓ | |||||
Injury Risk Factors/Biomechanical | ||||||||
Movement/balance (e.g., FMS, SIMS, SEBT, YBT) | ✓ | ✓ | ||||||
Landing/cutting mechanics (e.g., LESS, SMAS, CMAS, tuck jump assessment) | ✓ | ✓ | ✓ | |||||
Range of motion (e.g., goniometry) | ✓ | ✓ | ||||||
Flexibility (e.g., Thomas Test, Sit-and-Reach Test) | ✓ | ✓ | ||||||
Sport-Specific Skill | ||||||||
Isolated skill execution (e.g., UGent Dribbling Test, Shuttle Sprint and Dribble Test, LSPT, LSST) | ✓ | ✓ | ✓ | |||||
Simulated skill execution (e.g., small-sides game variations) | ✓ | ✓ | ✓ | ✓ | ||||
Genetic | ||||||||
Genetic profiling (e.g., genotyping for single/multiple genetic variants) | ✓ * | ✓ * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, E.C.R.; John, G.; Ahmetov, I.I. Testing in Football: A Narrative Review. Sports 2024, 12, 307. https://doi.org/10.3390/sports12110307
Hall ECR, John G, Ahmetov II. Testing in Football: A Narrative Review. Sports. 2024; 12(11):307. https://doi.org/10.3390/sports12110307
Chicago/Turabian StyleHall, Elliott C. R., George John, and Ildus I. Ahmetov. 2024. "Testing in Football: A Narrative Review" Sports 12, no. 11: 307. https://doi.org/10.3390/sports12110307
APA StyleHall, E. C. R., John, G., & Ahmetov, I. I. (2024). Testing in Football: A Narrative Review. Sports, 12(11), 307. https://doi.org/10.3390/sports12110307