Strike 3 … Out! Investigating Pre-Game Moods, Performance, and Mental Health of Softball Umpires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Procedure
2.4. Ethics
2.5. Statistical Analysis
2.6. Data Screening
3. Results
3.1. Group Mood Profile
3.2. Classification of Umpiring Performance from Mood
3.3. Mood Scores by Grouping Variables
3.3.1. Effect of Umpire Performance
3.3.2. Effect of Participant Sex
3.3.3. Effect of Participant Age
3.3.4. Effect of Field Position
3.3.5. Effect of Accreditation Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, W.P. The test of champions. Psychol Today 1980, 14, 92–108. [Google Scholar]
- LeUnes, A.; Burger, J. Profile of Mood States research in sport and exercise psychology: Past, present, and future. J. Appl. Sport Psychol. 2000, 12, 5–15. [Google Scholar] [CrossRef]
- Gorczynski, P.; Webb, T. Developing a mental health research agenda for football referees. Soccer Soc. 2021, 22, 655–662. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Rynne, S.B. Seen but not heard: Missing the mark in conceptualizing high performance officiating. Sport Soc. 2020, 24, 1110–1121. [Google Scholar] [CrossRef]
- Samełko, A.; Guszkowska, M. Affective states and performance outcomes—The findings of preliminary research involving pentathletes. Pol. J. Sport Tour. 2016, 23, 21–24. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Manual for the Profile of Mood States; Educational and Industrial Testing Services: San Diego, CA, USA, 1971. [Google Scholar]
- Terry, P.C.; Lane, A.M.; Lane, H.J.; Keohane, L. Development and validation of a mood measure for adolescents. J. Sport. Sci. 1999, 17, 861–872. [Google Scholar] [CrossRef]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- Terry, P.C. The efficacy of mood state profiling with elite performers: A review and synthesis. Sport Psychol. 1995, 9, 309–324. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L. Mood profiling for sustainable mental health among athletes. Sustainability 2021, 13, 6116. [Google Scholar] [CrossRef]
- Parsons-Smith, R.L.; Barkase, S.; Lovell, G.P.; Vleck, V.; Terry, P.C. Mood profiles of amateur triathletes: Implications for mental health and performance. Front. Psychol. 2022, 13, 925992. [Google Scholar] [CrossRef] [PubMed]
- Morgan, W.P. Selected psychological factors limiting performance: A mental health model. In Limits of Human Performance; Clarke, D.H., Eckert, H.M., Eds.; Human Kinetics: Champaign, IL, USA, 1985; pp. 70–80. [Google Scholar]
- Morgan, W.P. Prediction of performance in athletics. In Coach, Athlete, and the Sport Psychologist, 2nd ed.; Klavora, P., Daniel, J.V., Eds.; Human Kinetics Publishers: Champaign, IL, USA, 1980. [Google Scholar]
- van Wijk, C.H.; Martin, J.H.; Hans-Arendse, C. Clinical utility of the Brunel Mood Scale in screening for post-traumatic stress risk in a military population. Mil. Med. 2013, 178, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Sties, S.W.; Gonzáles, A.I.; Netto, A.S.; Wittkopf, P.G.; Lima, D.P.; de Carvalho, T. Validation of the Brunel Mood Scale for cardiac rehabilitation program. Rev. Bras. Med. Esporte 2014, 20, 281–284. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L.; Terry, V.R. Mood responses associated with COVID-19 restrictions. Front. Psychol. 2020, 11, 589598. [Google Scholar] [CrossRef] [PubMed]
- Budgett, R. Fatigue and underperformance in athletes: The overtraining syndrome. Br. J. Sports Med. 1988, 32, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Raglin, J.S. Psychological factors in sport performance: The mental health model revisited. Sports Med. 2001, 31, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Parsons-Smith, R.L.; Terry, P.C.; Machin, M.A. Identification and description of novel mood profile clusters. Front. Psychol. 2017, 8, 1958. [Google Scholar] [CrossRef]
- Quartiroli, A.; Parsons-Smith, R.L.; Fogarty, G.J.; Kuan, G.; Terry, P.C. Cross-cultural validation of mood profile clusters in a sport and exercise context. Front. Psychol. 2018, 9, 1949. [Google Scholar] [CrossRef]
- Han, C.S.Y.; Parsons-Smith, R.L.; Terry, P.C. Mood profiling in Singapore: Cross-cultural validation and potential applications of mood profile clusters. Front. Psychol. 2020, 11, 665. [Google Scholar] [CrossRef]
- Hancock, D.J.; Bennett, S.; Roaten, H.; Chapman, K.; Stanley, C. An analysis of literature on sport officiating research. Res. Q. Exerc. Sport 2021, 92, 607–617. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, C.; Plessner, H. The sport official in research and practice. In Developing Sport Expertise; Farrow, D., Baker, J., MacMahon, C., Eds.; Routledge: London, UK, 2008; pp. 172–192. [Google Scholar]
- Hancock, D.J.; Dawson, D.J.; Auger, D. Why Ref? Understanding sport officials’ motivations to begin, continue, and quit. Mov. Sport Sci.-Sci. Mot. 2015, 87, 31–39. [Google Scholar] [CrossRef]
- Livingston, L.A.; Forbes, S.L. “Just bounce right back up and dust yourself off” Participation motivations, resilience, and perceived organizational support among amateur baseball umpires. Baseb. Res. J. 2017, 46, 91–101. [Google Scholar]
- Lloyd, S. Bullying, Abuse of Referees Prompts Call for Mental Health Support of Sporting Officials. Available online: https://www.abc.net.au/news/2018-09-22/referee-bullying-call-mental-health-support-officials/10281392?utm_campaign=abc_news_web&utm_content=link&utm_medium=content_shared&utm_source=abc_news_web (accessed on 31 January 2022).
- Beedie, C.J.; Terry, P.C.; Lane, A.M. The profile of mood states and athletic performance: Two meta-analyses. J. Appl. Sport Psychol. 2000, 12, 49–68. [Google Scholar] [CrossRef]
- Lochbaum, M.; Zanatta, T.; Kirschling, D.; May, E. The Profile of Moods States and athletic performance: A meta-analysis of published studies. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 50–70. [Google Scholar] [CrossRef] [PubMed]
- World Baseball Softball Confederation. Umpire Manual Fast Pitch. 2021. Available online: https://static.wbsc.org/assets/cms/documents/cc7076b3-6edd-7331-e648-c239e70be39a.pdf (accessed on 17 January 2024).
- Terry, P.C.; Parsons-Smith, R.L.; King, R.; Terry, V.R. Influence of sex, age, and education on mood profile clusters. PLoS ONE 2021, 16, e0245341. [Google Scholar] [CrossRef]
- Softball Australia. Levels of Accreditation. Available online: https://www.softball.org.au/levels-of-accreditation-/ (accessed on 15 January 2024).
- World Baseball Softball Confederation. 2022–2025 Guidelines and Criteria for Softball Umpiring Licensing. Available online: https://static.wbsc.org/assets/cms/documents/4f45fd6a-19dc-b7a6-27d1-7a4868d6c55b.pdf (accessed on 9 October 2023).
- Softball Australia. Umpire Development Assessors Manual. 2022. Available online: https://cdn.revolutionise.com.au/cups/softballaust/files/edoaieetyop1mpt9.pdf (accessed on 15 January 2024).
- Coutts, A.J.; Reaburn, P.R.J. Time and motion analysis of the AFL field umpire. J. Sci. Med. Sport 2000, 3, 132–139. [Google Scholar] [CrossRef]
- Softball Australia. Australian Championships Tournament Chief Umpire Manual. 2023. Available online: https://cdn.revolutionise.com.au/cups/softballaust/files/qfzdkbyjx1vybpi0.pdf (accessed on 9 October 2023).
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp: Armonk, NY, USA, 2022. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: Boston, MA, USA, 2019. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: New York, NY, USA, 1988. [Google Scholar]
- Leiner, D.J. Too fast, too straight, too weird: Non-reactive indicators for meaningless data in internet surveys. Surv. Res. Methods 2019, 13, 229–248. [Google Scholar] [CrossRef]
- Meisenberg, G.; Williams, A. Are acquiescent and extreme response styles related to low intelligence and education? Personal. Individ. Differ. 2008, 44, 1539–1550. [Google Scholar] [CrossRef]
- Jones, G. More than just a game: Research developments and issues in competitive anxiety in sport. Br. J. Psychol. 1995, 86, 449–478. [Google Scholar] [CrossRef]
- Lane, A.M.; Terry, P.C. The nature of mood: Development of a conceptual model with a focus on depression. J. Appl. Sport Psychol. 2000, 12, 16–33. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw. Open 2020, 3, e2019686. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Dinsdale, S.L.; Karageorghis, C.I.; Lane, A.M. Use and perceived effectiveness of pre-competition mood regulation strategies among athletes. In Proceedings of the Psychology Bridging the Tasman: Science, Culture and Practice—Proceedings of the Joint Conference of the Australian Psychological Society and the New Zealand Psychological Society, Melbourne, VIC, Australia, 26–30 September 2006; pp. 420–424. [Google Scholar]
- Skala, F.; Zemková, E. Effects of acute fatigue on cognitive performance in team sport players: Does it change the way they perform? A scoping review. Appl. Sci. 2022, 12, 1736. [Google Scholar] [CrossRef]
- Russell, S.; Jenkins, D.; Rynne, S.; Halson, S.L.; Kelly, V. What is mental fatigue in elite sport? Perceptions from athletes and staff. Eur. J. Sport Sci. 2019, 19, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Cullen, T.; Clarke, N.D.; Vaquera, A. Sleep and mood of elite basketball referees during international competitions. Sport Sci. Health 2023, 19, 321–327. [Google Scholar] [CrossRef]
- Softball Australia. Umpiring Softball Pathways. 2020. Available online: https://cdn.revolutionise.com.au/cups/softballaust/files/55ddqbznvmfijfpa.pdf (accessed on 9 October 2023).
- Statista GmbH. Number of Softball Participants in the United States from 2010 to 2021. Available online: https://www.statista.com/statistics/191722/participants-in-softball-in-the-us-since-2006/ (accessed on 16 January 2023).
Dimension | Minimum | Maximum | Mean | SD | SE | t | p | d |
---|---|---|---|---|---|---|---|---|
Tension | 41 | 85 | 46.28 | 5.89 | 0.43 | 5.05 | <0.001 | −0.63 |
Depression | 43 | 59 | 44.09 | 2.04 | 0.15 | 8.04 | <0.001 | −2.90 |
Anger | 43 | 56 | 43.14 | 1.04 | 0.08 | 9.33 | <0.001 | −6.60 |
Vigour | 30 | 72 | 51.55 | 7.70 | 0.57 | 2.10 | 0.040 | 0.20 |
Fatigue | 36 | 65 | 40.36 | 4.92 | 0.36 | 13.09 | <0.001 | −1.96 |
Confusion | 42 | 55 | 42.48 | 1.82 | 0.13 | 10.23 | <0.001 | −4.13 |
Fail (n = 30) | Pass (n = 155) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | Mean | SD | SE | Mean | SD | SE | F | p | Partial η2 |
Tension | 49.87 | 8.93 | 1.60 | 45.58 | 4.86 | 0.40 | 14.21 | <0.001 | 0.072 |
Depression | 44.77 | 3.29 | 0.60 | 43.96 | 1.69 | 0.14 | 3.97 | 0.048 | 0.021 |
Anger | 43.20 | 0.76 | 0.14 | 43.12 | 1.10 | 0.09 | 0.14 | 0.712 | 0.001 |
Vigour | 50.97 | 7.11 | 1.30 | 51.66 | 7.85 | 0.63 | 0.20 | 0.652 | 0.001 |
Fatigue | 40.03 | 3.31 | 0.60 | 40.42 | 5.20 | 0.42 | 0.15 | 0.696 | 0.001 |
Confusion | 43.03 | 2.27 | 0.41 | 42.37 | 1.71 | 0.14 | 3.40 | 0.067 | 0.018 |
Females n = 69 | Males n = 116 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | Mean | SD | SE | Mean | SD | SE | F | p | Partial η2 |
Tension | 47.72 | 8.27 | 1.00 | 45.41 | 3.65 | 0.34 | 6.85 | 0.010 | 0.036 |
Depression | 43.16 | 0.96 | 0.12 | 44.65 | 2.30 | 0.21 | 26.07 | <0.001 | 0.125 |
Anger | 43.00 | 0.00 | 0.00 | 43.22 | 1.32 | 0.12 | 1.84 | 0.176 | 0.010 |
Vigour | 54.70 | 6.31 | 0.76 | 49.68 | 7.90 | 0.73 | 20.14 | 0.001 | 0.099 |
Fatigue | 39.38 | 4.08 | 0.49 | 40.94 | 5.31 | 0.49 | 4.42 | 0.037 | 0.024 |
Confusion | 42.39 | 1.25 | 0.15 | 42.53 | 2.09 | 0.19 | 0.24 | 0.628 | 0.001 |
23–50 Years (n = 82) | 51+ Years (n = 103) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | Mean | SD | SE | Mean | SD | SE | F | p | Partial η2 |
Tension | 47.46 | 7.56 | 0.84 | 45.33 | 3.92 | 0.39 | 6.13 | 0.014 | 0.032 |
Depression | 43.37 | 0.73 | 0.08 | 44.67 | 2.52 | 0.25 | 20.60 | <0.001 | 0.101 |
Anger | 43.00 | 0.00 | 0.00 | 43.24 | 1.40 | 0.14 | 2.47 | 0.117 | 0.013 |
Vigour | 54.88 | 6.44 | 0.71 | 48.90 | 7.66 | 0.76 | 31.93 | <0.001 | 0.149 |
Fatigue | 40.76 | 5.00 | 0.55 | 40.04 | 4.89 | 0.48 | 0.96 | 0.328 | 0.005 |
Confusion | 42.59 | 1.75 | 0.19 | 42.39 | 1.88 | 0.19 | 0.53 | 0.466 | 0.003 |
Plate (n = 59) | Field (n = 126) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | Mean | SD | SE | Mean | SD | SE | F | p | Partial η2 |
Tension | 48.41 | 7.66 | 1.00 | 45.28 | 4.57 | 0.41 | 11.97 | <0.001 | 0.061 |
Depression | 44.12 | 2.31 | 0.30 | 44.08 | 1.91 | 0.17 | 0.02 | 0.903 | 0.000 |
Anger | 43.00 | 0.00 | 0.00 | 43.20 | 1.27 | 0.11 | 1.45 | 0.231 | 0.008 |
Vigour | 52.27 | 7.89 | 0.03 | 51.21 | 7.65 | 0.68 | 0.75 | 0.387 | 0.004 |
Fatigue | 39.25 | 3.81 | 0.50 | 40.87 | 5.32 | 0.47 | 4.40 | 0.037 | 0.023 |
Confusion | 42.47 | 1.65 | 0.22 | 42.48 | 1.90 | 0.17 | 0.00 | 0.996 | 0.000 |
Level 4–6 (n = 164) | Level 7–8 (n = 21) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimension | Mean | SD | SE | Mean | SD | SE | F | p | Partial η2 |
Tension | 46.73 | 6.10 | 0.48 | 42.71 | 1.55 | 0.34 | 9.00 | 0.003 | 0.047 |
Depression | 44.12 | 2.10 | 0.16 | 43.86 | 1.49 | 0.33 | 0.31 | 0.577 | 0.002 |
Anger | 43.13 | 1.09 | 0.09 | 43.14 | 0.66 | 0.14 | 0.00 | 0.971 | 0.000 |
Vigour | 51.17 | 7.92 | 0.62 | 54.52 | 5.22 | 1.14 | 3.56 | 0.061 | 0.019 |
Fatigue | 40.85 | 5.03 | 0.39 | 36.52 | 0.51 | 0.11 | 15.40 | <0.001 | 0.078 |
Confusion | 42.54 | 1.82 | 0.15 | 42.00 | 0.00 | 0.00 | 1.62 | 0.204 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houison, R.J.; Lamont-Mills, A.; Kotiw, M.; Terry, P.C. Strike 3 … Out! Investigating Pre-Game Moods, Performance, and Mental Health of Softball Umpires. Sports 2024, 12, 50. https://doi.org/10.3390/sports12020050
Houison RJ, Lamont-Mills A, Kotiw M, Terry PC. Strike 3 … Out! Investigating Pre-Game Moods, Performance, and Mental Health of Softball Umpires. Sports. 2024; 12(2):50. https://doi.org/10.3390/sports12020050
Chicago/Turabian StyleHouison, Ronald J., Andrea Lamont-Mills, Michael Kotiw, and Peter C. Terry. 2024. "Strike 3 … Out! Investigating Pre-Game Moods, Performance, and Mental Health of Softball Umpires" Sports 12, no. 2: 50. https://doi.org/10.3390/sports12020050
APA StyleHouison, R. J., Lamont-Mills, A., Kotiw, M., & Terry, P. C. (2024). Strike 3 … Out! Investigating Pre-Game Moods, Performance, and Mental Health of Softball Umpires. Sports, 12(2), 50. https://doi.org/10.3390/sports12020050