Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Incremental Intensity Step Test
2.4. 200 m Front-Crawl Swimming Tasks
2.5. Maximal Speed 25 m Swimming Tasks
2.6. Measurements
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shimojo, H.; Sengoku, Y.; Miyoshi, T.; Tsubakimoto, S.; Takagi, H. Effect of Imposing Changes in Kick Frequency on Kinematics during Undulatory Underwater Swimming at Maximal Effort in Male Swimmers. Hum. Mov. Sci. 2014, 38, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Marinho, D.A.; Arellano, R.; Barbosa, T.M. Start and Turn Performances of Elite Sprinters at the 2016 European Championships in Swimming. Sports Biomech. 2019, 18, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Born, D.-P.; Kuger, J.; Polach, M.; Romann, M. Turn Fast and Win: The Importance of Acyclic Phases in Top-Elite Female Swimmers. Sports 2021, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Connaboy, C.; Coleman, S.; Sanders, R.H. Hydrodynamics of Undulatory Underwater Swimming: A Review. Sports Biomech. 2009, 8, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Vicentini, M.; Scattolini, A.; Rigamonti, M.; Bonifazi, M. The Contribution of Underwater Kicking Efficiency in Determining “Turning Performance” in Front Crawl Swimming. J. Sports Med. Phys. Fitness 2012, 52, 457–464. [Google Scholar] [PubMed]
- Veiga, S.; Roig, A. Underwater and Surface Strategies of 200 m World Level Swimmers. J. Sports Sci. 2016, 34, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.T.; Sanders, R.H. A Systematic Review of Propulsion from the Flutter Kick-What Can We Learn from the Dolphin Kick? J. Sports Sci. 2018, 36, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Connaboy, C.; Naemi, R.; Brown, S.; Psycharakis, S.; McCabe, C.; Coleman, S.; Sanders, R. The Key Kinematic Determinants of Undulatory Underwater Swimming at Maximal Velocity. J. Sports Sci. 2016, 34, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Navarro, J.J.; Cuenca-Fernández, F.; Sanders, R.; Arellano, R. The Determinant Factors of Undulatory Underwater Swimming Performance: A Systematic Review. J. Sports Sci. 2022, 40, 1243–1254. [Google Scholar] [CrossRef]
- Wolfrum, M.; Knechtle, B.; Rüst, C.A.; Rosemann, T.; Lepers, R. The Effects of Course Length on Freestyle Swimming Speed in Elite Female and Male Swimmers—A Comparison of Swimmers at National and International Level. Springerplus 2013, 2, 643. [Google Scholar] [CrossRef]
- Veiga, S.; Roig, A.; Gómez-Ruano, M.A. Do Faster Swimmers Spend Longer Underwater than Slower Swimmers at World Championships? Eur. J. Sport Sci. 2016, 16, 919–926. [Google Scholar] [CrossRef] [PubMed]
- RodrÍguez-Zamora, L.; Engan, H.K.; Lodin-Sundström, A.; Schagatay, F.; Iglesias, X.; Rodríguez, F.A.; Schagatay, E. Blood Lactate Accumulation during Competitive Freediving and Synchronized Swimming. Undersea Hyperb. Med. 2018, 45, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Pla, R.; Poszalczyk, G.; Souaissia, C.; Joulia, F.; Guimard, A. Underwater and Surface Swimming Parameters Reflect Performance Level in Elite Swimmers. Front. Physiol. 2021, 12, 712652. [Google Scholar] [CrossRef] [PubMed]
- Town, G.P.; Vanness, J.M. Metabolic Responses to Controlled Frequency Breathing in Competitive Swimmers. Med. Sci. Sports Exerc. 1990, 22, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Toubekis, A.G.; Beidaris, N.; Botonis, P.G.; Koskolou, M. Severe Hypoxemia Induced by Prolonged Expiration and Reduced Frequency Breathing during Submaximal Swimming. J. Sports Sci. 2017, 35, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Dicker, S.G.; Lofthus, G.K.; Thornton, N.W.; Brooks, G.A. Respiratory and Heart Rate Responses to Tethered Controlled Frequency Breathing Swimming. Med. Sci. Sports Exerc. 1980, 12, 20–23. [Google Scholar] [CrossRef] [PubMed]
- West, S.A.; Drummond, M.J.; Vanness, J.M.; Ciccolella, M.E. Blood Lactate and Metabolic Responses to Controlled Frequency Breathing during Graded Swimming. J. Strength Cond Res. 2005, 19, 772–776. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Pyne, D.B.; Lee, H.; Swanwick, K.M. Monitoring the Lactate Threshold in World-Ranked Swimmers. Med. Sci. Sports Exerc. 2001, 33, 291–297. [Google Scholar] [CrossRef]
- Nikitakis, I.S.; Toubekis, A.G. Lactate Threshold Evaluation in Swimmers: The Importance of Age and Method. Int. J. Sports Med. 2021, 42, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Psycharakis, S.G.; Cooke, C.B.; Paradisis, G.P.; O’Hara, J.; Phillips, G. Analysis of Selected Kinematic and Physiological Performance Determinants during Incremental Testing in Elite Swimmers. J. Strength Cond. Res. 2008, 22, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sports Med. 2020, 4, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Veiga, S.; Pla, R.; Qiu, X.; Boudet, D.; Guimard, A. Effects of Extended Underwater Sections on the Physiological and Biomechanical Parameters of Competitive Swimmers. Front. Physiol. 2022, 13, 815766. [Google Scholar] [CrossRef] [PubMed]
- Dekerle, J.; Nesi, X.; Lefevre, T.; Depretz, S.; Sidney, M.; Marchand, F.H.; Pelayo, P. Stroking Parameters in Front Crawl Swimming and Maximal Lactate Steady State Speed. Int. J. Sports Med. 2005, 26, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Zamparo, P.; Sousa, A.; Vilas-Boas, J.P.; Fernandes, R.J. An Energy Balance of the 200 m Front Crawl Race. Eur. J. Appl. Physiol. 2011, 11, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Veiga, S.; Cala, A.; Frutos, P.G.; Navarro, E. Comparison of Starts and Turns of National and Regional Level Swimmers by Individualized-Distance Measurements. Sports Biomech. 2014, 13, 285–295. [Google Scholar] [CrossRef]
- Woorons, X.; Mucci, P.; Richalet, J.P.; Pichon, A. Hypoventilation Training at Supramaximal Intensity Improves Swimming Performance. Med. Sci. Sports Exerc. 2016, 48, 1119–1128. [Google Scholar] [CrossRef]
- Lemaître, F.; Polin, D.; Joulia, F.; Boutry, A.; Le Pessot, D.; Chollet, D.; Tourny-Chollet, C. Physiological Responses to Repeated Apneas in Underwater Hockey Players and Controls. Undersea Hyperb. Med. 2007, 34, 407–414. [Google Scholar]
- Amann, M. Pulmonary System Limitations to Endurance Exercise Performance in Humans. Exp. Physiol. 2012, 97, 311–318. [Google Scholar] [CrossRef]
- Jakovljevic, D.G.; McConnell, A.K. Influence of Different Breathing Frequencies on the Severity of Inspiratory Muscle Fatigue Induced by High-Intensity Front Crawl Swimming. J. Strength Cond. Res. 2009, 23, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Lomax, M.; Kapus, J.; Webb, S.; Ušaj, A. The Effect of Inspiratory Muscle Fatigue on Acid-Base Status and Performance during Race-Paced Middle-Distance Swimming. J. Sports Sci. 2019, 37, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Venckunas, T.; Balsys, D. Pulmonary Function as a Limiting Factor of Middle-Distance Race Performance. J. Sports Med. Phys. Fit. 2022, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bougault, V.; Boulet, L.-P. Airway Dysfunction in Swimmers. Br. J. Sports Med. 2012, 46, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Fitch, K.D.; Sue-Chu, M.; Anderson, S.D.; Boulet, L.-P.; Hancox, R.J.; McKenzie, D.C.; Backer, V.; Rundell, K.W.; Alonso, J.M.; Kippelen, P.; et al. Asthma and the Elite Athlete: Summary of the International Olympic Committee’s Consensus Conference, Lausanne, Switzerland, January 22-24, 2008. J. Allergy Clin. Immunol. 2008, 122, 254–260.e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Al-Delaimy, W.K.; Hay, S.M.; Gain, K.R.; Jones, D.T.; Crane, J. The Effects of Carbon Dioxide on Exercise-Induced Asthma: An Unlikely Explanation for the Effects of Buteyko Breathing Training. Med. J. Aust. 2001, 174, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Bex, T.; Baguet, A.; Achten, E.; Aerts, P.; De Clercq, D.; Derave, W. Cyclic Movement Frequency Is Associated with Muscle Typology in Athletes. Scand. J. Med. Sci. Sports 2017, 27, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Affonso, H.O.; Silva, A.S.; Fernandes, R.J. Can Blood Lactate Concentrations Rise Significantly After Very Short Duration Swimming Bouts? Ann. Sport Med. Res. 2019, 6, 7–9. [Google Scholar]
- Vescovi, J.D.; Falenchuk, O.; Wells, G.D. Blood Lactate Concentration and Clearance in Elite Swimmers during Competition. Int. J. Sports Physiol. Perform. 2011, 6, 106–117. [Google Scholar] [CrossRef]
- Bret, C.; Messonnier, L.; Nouck Nouck, J.M.; Freund, H.; Dufour, A.B.; Lacour, J.R. Differences in Lactate Exchange and Removal Abilities in Athletes Specialised in Different Track Running Events (100 to 1500 m). Int. J. Sports Med. 2003, 24, 108–113. [Google Scholar] [CrossRef]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.-D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-Omics Analysis of Elite Athletes Identifies a Performance-Enhancing Microbe That Functions via Lactate Metabolism. Nat. Med. 2019, 25, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | Range | |
---|---|---|
Age, years | 15.4 (1.4) | 13–18 |
Training experience, years | 7.8 (1.2) | 6–10 |
Body height, cm | 179.1 (8.4) | 166–194 |
Body weight, kg | 66.8 (9.3) | 52–80 |
Body mass index, kg/m2 | 20.7 (1.9) | 18.1–24.2 |
Personal best FINA score | 636 (86) | 530–789 |
Specialization | ||
Freestyle, 50–100 m | 2 males, 2 females | |
Freestyle, 200–1500 m | 3 males | |
Breaststroke, 100–200 m | 1 male, 1 female | |
Butterfly, 50–100 m | 1 male | |
Medley, 100–200 m | 1 male, 1 female |
Short (<5 m) Underwater Section | Long (12.5 m) Underwater Section | |
---|---|---|
Lactate at baseline, mmol/L | 2.0 (0.5) | 2.4 (0.6) |
Lactate 1 min post, mmol/L | 3.3 (1.4) # | 7.9 (2.1) * # |
Lactate 5 min post, mmol/L | 3.0 (1.2) # | 6.6 (1.8) * # ^ |
Lactate accumulation, mmol/L | 1.3 (1.0) | 5.6 (2.3) * |
200 m swimming time, s | 154.5 (12.7) | 156.0 (12.9) |
1st 50m split, s | 37.2 (3.1) | 37.6 (3.3) |
2nd 50m split, s | 38.5 (3.4) | 39.1 (3.5) |
3rd 50m split, s | 39.5 (3.2) | 39.9 (3.3) |
4th 50m split, s | 39.3 (3.5) | 39.4 (3.7) |
Short (<5 m) Underwater Phase | Long (12.5 m) Underwater Phase | |
---|---|---|
12.5 m time, s | 6.00 (0.44) | 6.54 (0.85) |
25 m time, s | 13.13 (0.86) | 13.51 (1.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venckunas, T.; Achramavicius, J. Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming. Sports 2024, 12, 121. https://doi.org/10.3390/sports12050121
Venckunas T, Achramavicius J. Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming. Sports. 2024; 12(5):121. https://doi.org/10.3390/sports12050121
Chicago/Turabian StyleVenckunas, Tomas, and Justas Achramavicius. 2024. "Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming" Sports 12, no. 5: 121. https://doi.org/10.3390/sports12050121
APA StyleVenckunas, T., & Achramavicius, J. (2024). Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming. Sports, 12(5), 121. https://doi.org/10.3390/sports12050121