Physical and Physiological Characteristics of Elite CrossFit Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
- Men and women > 18 years.
- Participated in or qualified for the CrossFit Games1.
- Participated in the World Championship, Functional Fitness.
- Participated in Regionals2/Sanctionals3.
- National top 15, CrossFit Open 2019 and/or 2020.
Exclusion Criteria
2.3. Procedures
2.4. Aerobic Capacity
2.5. Anaerobic Capacity
2.6. Jump Performance
2.7. Lower Body Force–Velocity (Keiser Leg Press)
2.8. Body Composition (DXA)
2.9. Statistical Analysis
3. Results
3.1. Aerobic Capacity
3.2. Anaerobic Capacity
3.3. Squat and Jump Performance
3.4. Lower Body Force–Velocity
3.5. Body Composition (DXA)
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glassman, G. The CrossFit training guide. CrossFit J. 2010, 30, 1–115. [Google Scholar]
- Paine, J.; Uptgraft, J.; Wylie, R. CGSC CrossFit Study; Command and General Staff College: Fort Leavenworth, KS, USA, 2010. [Google Scholar]
- Schlegel, P. CrossFit® training strategies from the perspective of concurrent training: A systematic review. J. Sports Sci. Med. 2020, 19, 670–680. [Google Scholar] [PubMed]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-squat as a determinant of performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Giardina, M.J.; Butcher, S.; Mangine, G.T. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl. Physiol. Nutr. Metab. 2019, 44, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, E.K.; Cook, L.F.; Dexheimer, J.D.; Lemez, S.; Leyva, W.D.; Terbio, I.Y.; Tran, J.R.; Jo, E. The relationship between CrossFit® performance and laboratory-based measurements of fitness. Sports 2020, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological predictors of competition performance in CrossFit athletes. Int. J. Environ. Res. Public. Health 2020, 17, 3699. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.E.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol. Sport. 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological performance measures as indicators of CrossFit® performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef]
- Gómez-Landero, L.A.; Frias-Menacho, J.M. Analysis of morphofunctional variables associated with performance in Crossfit® competitors. J. Hum. Kinet. 2020, 73, 83–91. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Torrence, W.A. Total body strength predicts workout performance in a competitive fitness weightlifting workout. J. Exerc. Physiol. Online 2020, 23, 95–104. [Google Scholar]
- Meier, N.; Schlie, J.; Schmidt, A. CrossFit®: ‘Unknowable’ or predictable?-A systematic review on predictors of CrossFit® performance. Sports 2023, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.F.; Santos, G.B.D.; Reis, T.D.; Valerino, A.J.; Del Rosso, S.; Boullosa, D.A. Differences in physical fitness between recreational CrossFit® and resistance trained individuals. J. Exerc. Physiol. Online 2016, 19, 112–122. [Google Scholar]
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative values for self-reported benchmark workout scores in CrossFit® practitioners. Sports Med. Open 2018, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological differences between advanced CrossFit athletes, recreational CrossFit participants, and physically-active adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef] [PubMed]
- Serafini, P.R.; Feito, Y.; Mangine, G.T. Self-reported measures of strength and sport-specific skills distinguish ranking in an international online fitness competition. J. Strength. Cond. Res. 2018, 32, 3474–3484. [Google Scholar] [CrossRef]
- Gilgien, M.; Reid, R.; Raschner, C.; Supej, M.; Holmberg, H.-C. The training of Olympic Alpine ski racers. Front. Physiol. 2018, 9, 1772. [Google Scholar] [CrossRef]
- Andersen, R.E.; Montgomery, D.L. Physiology of Alpine skiing. Sports Med. 1988, 6, 210–221. [Google Scholar] [CrossRef]
- Turnbull, J.R.; Kilding, A.E.; Keogh, J.W. Physiology of alpine skiing. Scand. J. Med. Sci. Sports 2009, 19, 146–155. [Google Scholar] [CrossRef]
- Reid, R. The Planning of Training for Highly Qualified Alpine Ski Racers: The Philosophies of Expert Coaches; Norwegian School of Sport Sciences: Oslo, Norway, 2000. [Google Scholar]
- Wainwright, B.; Cooke, C.B.; O’Hara, J.P. The validity and reliability of a sample of 10 Wattbike cycle ergometers. J. Sports Sci. 2017, 35, 1451–1458. [Google Scholar] [CrossRef]
- Cronin, J.B.; Hing, R.D.; McNair, P.J. Reliability and validity of a linear position transducer for measuring jump performance. J. Strength. Cond. Res. 2004, 18, 590–593. [Google Scholar]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Lindberg, K.; Eythorsdottir, I.; Solberg, P.; Gløersen, Ø.; Seynnes, O.; Bjørnsen, T.; Paulsen, G. Validity of force-velocity profiling assessed with a pneumatic leg press device. Int. J. Sports Physiol. Perform. 2021, 16, 1777–1785. [Google Scholar] [CrossRef]
- Redden, J.; Stokes, K.; Williams, S. Establishing the reliability and limits of meaningful change of lower limb strength and power measures during seated leg press in elite soccer players. J. Sports Sci. Med. 2018, 17, 539–546. [Google Scholar]
- Slater, G.J.; Farley, A.; Hogarth, L.; Areta, J.L.; Paulsen, G.; Garthe, I. Impact of 24-Hr diet and physical activity control on short-term precision error of dual-energy X-ray absorptiometry physique assessment. Int. J. Sport. Nutr. Exerc. Metab. 2023, 33, 30–38. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Haugen, T.; Paulsen, G.; Seiler, S.; Sandbakk, Ø. New records in human power. Int. J. Sports Physiol. Perform. 2018, 13, 678–686. [Google Scholar] [CrossRef]
- Gross, M.A.; Breil, F.A.; Lehmann, A.D.; Hoppeler, H.; Vogt, M. Seasonal variation of VO2max and the VO2-work rate relationship in elite Alpine skiers. Med. Sci. Sports Exerc. 2009, 41, 2084–2089. [Google Scholar] [CrossRef]
- Haymes, E.; Dickinson, A. Relationships between laboratory tests and performance in the alpine skiing events. J. United States Ski. Coach. Assoc. 1980, 4, 29–32. [Google Scholar]
- Neumayr, G.; Hoertnagl, H.; Pfister, R.; Koller, A.; Eibl, G.; Raas, E. Physical and physiological factors associated with success in professional alpine skiing. Int. J. Sports Med. 2003, 24, 571–575. [Google Scholar]
- Sandbakk, O.; Solli, G.S.; Holmberg, H.C. Sex differences in world-record performance: The influence of sport discipline and competition duration. Int. J. Sports Physiol. Perform. 2018, 13, 2–8. [Google Scholar] [CrossRef]
- Buresh, R.; Berg, K. Scaling oxygen uptake to body size and several practical applications. J. Strength. Cond. Res. 2002, 16, 461–465. [Google Scholar]
- Reiser, R.F., 2nd; Maines, J.M.; Eisenmann, J.C.; Wilkinson, J.G. Standing and seated Wingate protocols in human cycling. A comparison of standard parameters. Eur. J. Appl. Physiol. 2002, 88, 152–157. [Google Scholar] [CrossRef]
- Nilsson, R.; Theos, A.; Lindberg, A.-S.; Ferguson, R.A.; Malm, C. Lack of predictive power in commonly used tests for performance in Alpine skiing. Sports Med. Int. Open 2021, 5, E28–E36. [Google Scholar] [CrossRef]
- Lucero, R.A.J.; Fry, A.C.; LeRoux, C.D.; Hermes, M.J. Relationships between barbell squat strength and weightlifting performance. Int. J. Sports Sci. Coach. 2019, 14, 562–568. [Google Scholar] [CrossRef]
- Seitz, L.B. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Haugen, T.; Breitschädel, F.; Wiig, H.; Seiler, S. Countermovement jump height in national-team athletes of various sports: A framework for practitioners and scientists. Int. J. Sports Physiol. Perform. 2020, 16, 184–189. [Google Scholar] [CrossRef]
- Hydren, J.R.; Volek, J.S.; Maresh, C.M.; Comstock, B.A.; Kraemer, W.J. Review of strength and conditioning for Alpine ski racing. Strength. Cond. J. 2013, 35, 10–28. [Google Scholar] [CrossRef]
- Ferguson, R.A. Limitations to performance during alpine skiing. Exp. Physiol. 2010, 95, 404–410. [Google Scholar] [CrossRef]
- Gilgien, M.; Spörri, J.; Kröll, J.; Crivelli, P.; Müller, E. Mechanics of turning and jumping and skier speed are associated with injury risk in men’s World Cup alpine skiing: A comparison between the competition disciplines. Br. J. Sports Med. 2014, 48, 742–747. [Google Scholar] [CrossRef]
- Morris, S.J.; Oliver, J.L.; Pedley, J.S.; Haff, G.G.; Lloyd, R.S. Comparison of weightlifting, traditional resistance training and plyometrics on strength, power and speed: A systematic review with meta-analysis. Sports Med. 2022, 52, 1533–1554. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Villegas-Mora, B.E.; Clemente-Suarez, V.J. Differences in body composition analysis by DEXA, skinfold and BIA methods in young football players. Children 2022, 9, 1643. [Google Scholar] [CrossRef] [PubMed]
- Karli, U.; Ucan, Y.; Sozbir, K.; Aydin, K.; Yarar, H. Validation of skinfold measurement method to DEXA for the assessment of body composition. Int. J. Phys. Educ. Sports Health 2016, 2, 20–26. [Google Scholar]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the IOC Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.; Fleishman, K.; Abt, J.P.; Sell, T.C.; Lovalekar, M.; Nagai, T.; Deluzio, J.; Rowe, R.S.; McGrail, M.A.; Lephart, S.M. Less body fat improves physical and physiological performance in army soldiers. Mil. Med. 2011, 176, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, B.; Clijsen, R.; Fässler, R.; Taeymans, J.; D’hondt, E.; Aerenhouts, D. Event specific body characteristics of elite Alpine skiers in relation to international rankings. Adv. Anthropol. 2017, 7, 94–106. [Google Scholar] [CrossRef]
- Giovanelli, L.; Biganzoli, G.; Spataro, A.; Malacarne, M.; Bernardelli, G.; Spada, R.; Pagani, M.; Biganzoli, E.; Lucini, D. Body composition assessment in a large cohort of Olympic athletes with different training loads: Possible reference values for fat mass and fat-free mass domains. Acta Diabetol. 2023, 61, 361–372. [Google Scholar] [CrossRef]
CFM (n = 8) | AM (n = 8) | CFW (n = 11) | AW (n = 8) | |
---|---|---|---|---|
Age (yrs) | 28.4 ± 3.0 | 26.5 ± 5.7 | 29.2 ± 4.4 | 25.6 ± 3.5 |
Height (m) | 181.1 ± 7.2 | 183.5 ± 3.5 | 168.4 ± 5.1 | 170.1 ± 2.9 |
Weight (kg) BMI (kg·m−2) | 88.5 ± 7.7 26.9 ± 0.9 | 90.0 ± 8.3 26.7 ± 2.0 | 67.9 ± 5.3 23.9 ± 0.8 | 69.7 ± 5.3 24.1 ± 1.5 |
CFM (n = 8) | AM (n = 7) | p-Value | ES | CFW (n = 9) | AW (n = 8) | p-Value | ES | |
---|---|---|---|---|---|---|---|---|
Peak power (W) | 1497 ± 170 | 1398 ± 181 | 0.296 | 0.56 | 925 ± 121 | 1040 ± 123 | 0.149 | 0.90 |
Relative peak power (W·kg−1) | 16.8 ± 1.3 | 15.8 ± 1.6 | 0.234 | 0.66 | 13.6 ± 1.5 | 14.9 ± 1.4 | 0.088 | 0.84 |
Mean power (W) | 968 ± 90 | 837 ± 103 | 0.021 | 1.36 | 644 ± 51 | 570 ± 48 | 0.008 | 1.41 |
Relative mean power (W·kg−1) | 10.9 ± 0.8 | 9.5 ± 1.2 | 0.018 | 1.40 | 9.5 ± 0.6 | 8.2 ± 0.8 | 0.001 | 1.79 |
CFM (n = 8) | AM (n = 8) | p-Value | ES | CFW (n = 11) | AW (n = 8) | p-Value | ES | |
---|---|---|---|---|---|---|---|---|
1RM squat (kg) | 188.2 ± 14.8 | 178.6 ± 21.4 * | 0.324 | 0.50 | 130.6 ± 7.2 | 131.3 ± 7.6 | 0.849 | 0.09 |
Relative squat (1RM·kg−1) | 2.13 ± 0.19 | 2.03 ± 0.28 * | 0.439 | 0.39 | 1.93 ± 0.16 | 1.88 ± 0.14 | 0.460 | 0.34 |
CMJ jump height (cm) | 50.2 ± 2.5 | 47.5 ± 7.2 | 0.353 | 0.46 | 39.6 ± 4.7 # | 37.0 ± 3.6 | 0.221 | 0.58 |
CFM (n = 8) | AM (n = 7) | p-Value | ES | CFW (n = 10) | AW (n = 8) | p-Value | ES | |
---|---|---|---|---|---|---|---|---|
Fmax (N) | 3398 ± 426 | 4028 ± 656 | 0.043 | 1.09 | 2288 ± 160 | 2701 ± 440 | 0.034 | 1.25 |
Vmax (m·s−1) | 5.3 ± 0.4 | 4.8 ± 0.3 | 0.038 | 1.12 | 4.5 ± 0.2 | 4.7 ± 0.4 | 0.198 | 0.61 |
Pmax (W) | 3020 ± 388 | 2418 ± 371 | 0.009 | 1.49 | 1923 ± 231 | 1566 ± 193 | 0.003 | 1.58 |
Relative Fmax (N·kg−1) | 38.4 ± 3.2 | 45.8 ± 7.1 | 0.034 | 1.31 | 33.5 ± 2.3 | 39.0 ± 7.7 | 0.088 | 0.97 |
Relative Pmax (W·kg−1) | 34.1 ± 2.9 | 27.5 ± 4.1 | 0.003 | 1.76 | 28.1 ± 2.6 | 22.6 ± 3.3 | 0.001 | 1.81 |
CFM (n = 8) | AM (n = 8) | p-Value | ES | CFW (n = 9) | AW (n = 8) | p-Value | ES | |
---|---|---|---|---|---|---|---|---|
Fat mass (kg) | 10.0 ± 1.9 | 15.0 ± 4.6 | 0.018 | 1.36 | 10.2 ± 2.2 | 16.3 ± 4.5 | 0.002 | 1.67 |
Fat-free mass (kg) Lean mass (kg) | 79.3 ± 7.4 75.3 ± 7.0 | 79.4 ± 4.6 75.5 ± 4.5 | 0.971 0.957 | 0.02 0.03 | 58.0 ± 3.4 55.1 ± 3.3 | 55.3 ± 2.9 52.3 ± 2.8 | 0.100 0.085 | 0.81 0.85 |
Bone mass (kg) | 4.0 ± 0.6 | 3.9 ± 0.2 | 0.637 | 0.23 | 3.0 ± 0.3 | 2.9 ± 0.2 | 0.730 | 0.16 |
Fat % (-) | 11.8 ± 2.4 | 16.2 ± 4.5 | 0.027 | 1.16 | 15.5 ± 2.3 | 23.5 ± 4.4 | <0.001 | 2.19 |
FFMI (kg·m−2) | 24.1 ± 0.9 | 23.6 ± 1.4 | 0.384 | 0.43 | 20.5 ± 0.5 | 19.1 ± 0.7 | <0.001 | 2.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauvé, B.; Haugan, M.; Paulsen, G. Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports 2024, 12, 162. https://doi.org/10.3390/sports12060162
Sauvé B, Haugan M, Paulsen G. Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports. 2024; 12(6):162. https://doi.org/10.3390/sports12060162
Chicago/Turabian StyleSauvé, Bram, Magnus Haugan, and Gøran Paulsen. 2024. "Physical and Physiological Characteristics of Elite CrossFit Athletes" Sports 12, no. 6: 162. https://doi.org/10.3390/sports12060162
APA StyleSauvé, B., Haugan, M., & Paulsen, G. (2024). Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports, 12(6), 162. https://doi.org/10.3390/sports12060162