The Characteristics of Endurance Events with a Variable Pacing Profile—Time to Embrace the Concept of “Intermittent Endurance Events”?
Abstract
:1. Introduction
2. Methods
3. Factors That Contribute to a Variable Pacing Profile in Endurance Events
3.1. Out with Old, in with the New—New Race Formats and Changes in Regulations Influenced the Races’ Pacing Profiles
3.2. Uphill, Downhill, and Technical Demands—How the Course’s Characteristics Influence Pacing Profile
3.3. Breaking Away—The Influence of Race Dynamics to a Variable Pacing Profile
4. Characteristics of Surges in Intensity in Variable Pacing Endurance Events
4.1. Cross-Country Skiing
4.2. Mountain Biking
4.3. Road Cycling
4.4. Triathlon
5. Intermittent Endurance Events: Potential Implications for Performance
5.1. Fatigue Development during the Race
5.2. Impact of a Variable Pacing Profile on Determinants of Endurance Performance
6. Practical Applications and Future Directions
6.1. Summary of Different Intensity Zones to Performance
6.2. Potential Aids for Performance Improvement and Environmental Considerations
6.3. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Abbiss, C.R.; Laursen, P.B. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef]
- Skorski, S.; Abbiss, C.R. The Manipulation of Pace within Endurance Sport. Front. Physiol. 2017, 8, 102. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Hettinga, F.J.; Edwards, A.M.; Hanley, B. The Science Behind Competition and Winning in Athletics: Using World-Level Competition Data to Explore Pacing and Tactics. Front. Sports Act. Living 2019, 1, 11. [Google Scholar] [CrossRef]
- Azevedo, R.A.; Cruz, R.; Couto, P.; Silva-Cavalcante, M.D.; Boari, D.; Lima-Silva, A.E.; Millet, G.Y.; Bertuzzi, R. Characterization of performance fatigability during a self-paced exercise. J. Appl. Physiol. (1985) 2019, 127, 838–846. [Google Scholar] [CrossRef]
- Sandford, G.N.; Laursen, P.B.; Buchheit, M. Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions. Sports Med. 2021, 51, 2017–2028. [Google Scholar] [CrossRef]
- Menaspà, P.; Quod, M.; Martin, D.T.; Peiffer, J.J.; Abbiss, C.R. Physical Demands of Sprinting in Professional Road Cycling. Int. J. Sports Med. 2015, 36, 1058–1062. [Google Scholar] [CrossRef]
- Peiffer, J.J.; Abbiss, C.R.; Haakonssen, E.C.; Menaspà, P. Sprinting for the Win: Distribution of Power Output in Women’s Professional Cycling. Int. J. Sports Physiol. Perform. 2018, 13, 1237–1242. [Google Scholar] [CrossRef]
- Seeberg, T.M.; Kocbach, J.; Wolf, H.; Talsnes, R.K.; Sandbakk, Ø.B. Race development and performance-determining factors in a mass-start cross-country skiing competition. Front. Sports Act. Living 2022, 4, 1094254. [Google Scholar] [CrossRef]
- Granier, C.; Abbiss, C.R.; Aubry, A.; Vauchez, Y.; Dorel, S.; Hausswirth, C.; Le Meur, Y. Power Output and Pacing During International Cross-Country Mountain Bike Cycling. Int. J. Sports Physiol. Perform. 2018, 13, 1243–1249. [Google Scholar] [CrossRef]
- Gløersen, Ø.; Gilgien, M.; Dysthe, D.K.; Malthe-Sørenssen, A.; Losnegard, T. Oxygen Demand, Uptake, and Deficits in Elite Cross-Country Skiers during a 15-km Race. Med. Sci. Sports Exerc. 2020, 52, 983–992. [Google Scholar] [CrossRef]
- Macdermid, P.W.; Stannard, S. Mechanical work and physiological responses to simulated cross country mountain bike racing. J. Sports Sci. 2012, 30, 1491–1501. [Google Scholar] [CrossRef]
- Næss, S.; Sollie, O.; Gløersen, Ø.N.; Losnegard, T. Exercise Intensity and Pacing Pattern During a Cross-Country Olympic Mountain Bike Race. Front. Physiol. 2021, 12, 702415. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Menaspà, P.; Villerius, V.; Martin, D.T. Distribution of power output when establishing a breakaway in cycling. Int. J. Sports Physiol. Perform. 2013, 8, 452–455. [Google Scholar] [CrossRef]
- Sanders, D.; Heijboer, M. Physical demands and power profile of different stage types within a cycling grand tour. Eur. J. Sport. Sci. 2019, 19, 736–744. [Google Scholar] [CrossRef]
- Bernard, T.; Hausswirth, C.; Le Meur, Y.; Bignet, F.; Dorel, S.; Brisswalter, J. Distribution of power output during the cycling stage of a Triathlon World Cup. Med. Sci. Sports Exerc. 2009, 41, 1296–1302. [Google Scholar] [CrossRef]
- Walsh, J.A. The Rise of Elite Short-Course Triathlon Re-Emphasises the Necessity to Transition Efficiently from Cycling to Running. Sports 2019, 7, 99. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur. J. Sport. Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Andersson, E.; Holmberg, H.C.; Ørtenblad, N.; Björklund, G. Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials. Med. Sci. Sports Exerc. 2016, 48, 2544–2554. [Google Scholar] [CrossRef]
- Etxebarria, N.; D’Auria, S.; Anson, J.M.; Pyne, D.B.; Ferguson, R.A. Variability in power output during cycling in international Olympic-distance triathlon. Int. J. Sports Physiol. Perform. 2014, 9, 732–734. [Google Scholar] [CrossRef]
- Hays, A.; Devys, S.; Bertin, D.; Marquet, L.A.; Brisswalter, J. Understanding the Physiological Requirements of the Mountain Bike Cross-Country Olympic Race Format. Front. Physiol. 2018, 9, 1062. [Google Scholar] [CrossRef]
- Karlsson, Ø.; Gilgien, M.; Gløersen, Ø.N.; Rud, B.; Losnegard, T. Exercise Intensity During Cross-Country Skiing Described by Oxygen Demands in Flat and Uphill Terrain. Front. Physiol. 2018, 9, 846. [Google Scholar] [CrossRef]
- Etxebarria, N.; Ingham, S.A.; Ferguson, R.A.; Bentley, D.J.; Pyne, D.B. Sprinting After Having Sprinted: Prior High-Intensity Stochastic Cycling Impairs the Winning Strike for Gold. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef]
- Theurel, J.; Lepers, R. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling. Eur. J. Appl. Physiol. 2008, 103, 461–468. [Google Scholar] [CrossRef]
- Bellinger, P.; Derave, W.; Lievens, E.; Kennedy, B.; Arnold, B.; Rice, H.; Minahan, C. Determinants of last lap speed in paced and maximal 1500-m time trials. Eur. J. Appl. Physiol. 2021, 121, 525–537. [Google Scholar] [CrossRef]
- Inoue, A.; AS, S.F.; Mello, F.C.; Santos, T.M. Relationship between anaerobic cycling tests and mountain bike cross-country performance. J. Strength. Cond. Res. 2012, 26, 1589–1593. [Google Scholar] [CrossRef]
- Losnegard, T.; Hallén, J. Physiological differences between sprint- and distance-specialized cross-country skiers. Int. J. Sports Physiol. Perform. 2014, 9, 25–31. [Google Scholar] [CrossRef]
- Sandbakk, O.; Ettema, G.; Leirdal, S.; Jakobsen, V.; Holmberg, H.C. Analysis of a sprint ski race and associated laboratory determinants of world-class performance. Eur. J. Appl. Physiol. 2011, 111, 947–957. [Google Scholar] [CrossRef]
- Andersson, E.; Supej, M.; Sandbakk, Ø.; Sperlich, B.; Stöggl, T.; Holmberg, H.C. Analysis of sprint cross-country skiing using a differential global navigation satellite system. Eur. J. Appl. Physiol. 2010, 110, 585–595. [Google Scholar] [CrossRef]
- Cejuela, R.; Arévalo, H.; Sellés, S. Power Profile during Cycling in World Triathlon Series and Olympic Games. J. Sports Sci. Med. 2024, 23, 25. [Google Scholar] [CrossRef]
- Smekal, G.; von Duvillard, S.P.; Hörmandinger, M.; Moll, R.; Heller, M.; Pokan, R.; Bacharach, D.W.; LeMura, L.M.; Arciero, P. Physiological Demands of Simulated Off-Road Cycling Competition. J. Sports Sci. Med. 2015, 14, 799–810. [Google Scholar]
- Sandbakk, Ø.; Holmberg, H.C. A reappraisal of success factors for Olympic cross-country skiing. Int. J. Sports Physiol. Perform. 2014, 9, 117–121. [Google Scholar] [CrossRef]
- Arriel, R.A.; Meireles, A.; Souza, H.L.R.; Leite, R.C.d.M.; Marocolo, M. Mechanical demands and pacing profile adopted by elite mountain bikers during different cross-country events. J. Phys. Educ. 2023, 34, e3437. [Google Scholar] [CrossRef]
- Sharma, A.P.; Périard, J.D. Physiological Requirements of the Different Distances of Triathlon. In Triathlon Medicine; Migliorini, S., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 5–17. [Google Scholar]
- Impellizzeri, F.M.; Marcora, S.M. The physiology of mountain biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef]
- Bossi, A.H.; O’Grady, C.; Ebreo, R.; Passfield, L.; Hopker, J.G. Pacing Strategy and Tactical Positioning During Cyclo-Cross Races. Int. J. Sports Physiol. Perform. 2018, 13, 452–458. [Google Scholar] [CrossRef]
- Harnish, C.R.; Ferguson, H.A.; Swinand, G.P. Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete. Sports 2021, 9, 136. [Google Scholar] [CrossRef]
- Ihalainen, S.; Colyer, S.; Andersson, E.; McGawley, K. Performance and Micro-Pacing Strategies in a Classic Cross-Country Skiing Sprint Race. Front. Sports Act. Living 2020, 2, 77. [Google Scholar] [CrossRef]
- Sandbakk, Ø.; Losnegard, T.; Skattebo, Ø.; Hegge, A.M.; Tønnessen, E.; Kocbach, J. Analysis of Classical Time-Trial Performance and Technique-Specific Physiological Determinants in Elite Female Cross-Country Skiers. Front. Physiol. 2016, 7, 326. [Google Scholar] [CrossRef]
- Staunton, C.A.; Colyer, S.L.; Karlsson, Ø.; Swarén, M.; Ihalainen, S.; McGawley, K. Performance and Micro-Pacing Strategies in a Freestyle Cross-Country Skiing Distance Race. Front. Sports Act. Living 2022, 4, 834474. [Google Scholar] [CrossRef]
- Menaspà, P.; Quod, M.; Martin, D.; Victor, J.; Abbiss, C. Physiological demands of road sprinting in professional and U23 cycling. A pilot study. J. Sci. Cycl. 2013, 2, 35. [Google Scholar]
- Smith, D.; Lee, H.; Pickard, R.; Sutton, B.; Hunter, E. Power demands of the cycle leg during elite triathlon competition. Cah. De L’insep 1999, 24, 224–230. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Zinner, C.; Platt, S.; Stöggl, T.; Holmberg, H.C. Factors that Influence the Performance of Elite Sprint Cross-Country Skiers. Sports Med. 2017, 47, 319–342. [Google Scholar] [CrossRef]
- Losnegard, T. Energy system contribution during competitive cross-country skiing. Eur. J. Appl. Physiol. 2019, 119, 1675–1690. [Google Scholar] [CrossRef]
- Viana, B.F.; Pires, F.O.; Inoue, A.; Santos, T.M. Pacing Strategy During Simulated Mountain Bike Racing. Int. J. Sports Physiol. Perform. 2018, 13, 208–213. [Google Scholar] [CrossRef]
- Maunder, E.; Seiler, S.; Mildenhall, M.J.; Kilding, A.E.; Plews, D.J. The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Med. 2021, 51, 1619–1628. [Google Scholar] [CrossRef]
- Ebert, T.R.; Martin, D.T.; Stephens, B.; Withers, R.T. Power output during a professional men’s road-cycling tour. Int. J. Sports Physiol. Perform. 2006, 1, 324–335. [Google Scholar] [CrossRef]
- van Erp, T.; Lamberts, R.P. Performance Characteristics of TOP5 Versus NOT-TOP5 Races in Female Professional Cycling. Int. J. Sports Physiol. Perform. 2022, 17, 1070–1076. [Google Scholar] [CrossRef]
- Van Erp, T.; Sanders, D. Demands of professional cycling races: Influence of race category and result. Eur. J. Sport. Sci. 2021, 21, 666–677. [Google Scholar] [CrossRef]
- Phillips, K.E.; Hopkins, W.G. Determinants of Cycling Performance: A Review of the Dimensions and Features Regulating Performance in Elite Cycling Competitions. Sports Med.—Open 2020, 6, 23. [Google Scholar] [CrossRef]
- Menaspà, P.; Abbiss, C.R.; Martin, D.T. Performance analysis of a world-class sprinter during cycling grand tours. Int. J. Sports Physiol. Perform. 2013, 8, 336–340. [Google Scholar] [CrossRef]
- van Erp, T.; Kittel, M.; Lamberts, R.P. Sprint Tactics in the Tour de France: A Case Study of a World-Class Sprinter (Part II). Int. J. Sports Physiol. Perform. 2021, 16, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Pinot, J.; Grappe, F. The record power profile to assess performance in elite cyclists. Int. J. Sports Med. 2011, 32, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, P.L.; Muriel, X.; van Erp, T.; Mateo-March, M.; Gandia-Soriano, A.; Zabala, M.; Lamberts, R.P.; Lucia, A.; Barranco-Gil, D.; Pallarés, J.G. The Record Power Profile of Male Professional Cyclists: Normative Values Obtained From a Large Database. Int. J. Sports Physiol. Perform. 2022, 17, 701–710. [Google Scholar] [CrossRef] [PubMed]
- van Erp, T.; Kittel, M.; Lamberts, R.P. Demands of the Tour de France: A Case Study of a World-Class Sprinter (Part I). Int. J. Sports Physiol. Perform. 2021, 16, 1363–1370. [Google Scholar] [CrossRef]
- Piacentini, M.F.; Bianchini, L.A.; Minganti, C.; Sias, M.; Di Castro, A.; Vleck, V. Is the Bike Segment of Modern Olympic Triathlon More a Transition towards Running in Males than It Is in Females? Sports 2019, 7, 76. [Google Scholar] [CrossRef]
- Quagliarotti, C.; Gaiola, D.; Bianchini, L.; Vleck, V.; Piacentini, M.F. How to Form a Successful Team for the Novel Olympic Triathlon Discipline: The Mixed-Team-Relay. J. Funct. Morphol. Kinesiol. 2022, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Bernard, T.; Vercruyssen, F.; Mazure, C.; Gorce, P.; Hausswirth, C.; Brisswalter, J. Constant versus variable-intensity during cycling: Effects on subsequent running performance. Eur. J. Appl. Physiol. 2007, 99, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Etxebarria, N.; Hunt, J.; Ingham, S.; Ferguson, R. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. J. Sports Sci. 2014, 32, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.W.; Poole, D.C.; Smith, J.C. The relationship between power and the time to achieve VO(2max). Med. Sci. Sports Exerc. 2002, 34, 709–714. [Google Scholar] [CrossRef]
- Iannetta, D.; Zhang, J.; Murias, J.M.; Aboodarda, S.J. Neuromuscular and perceptual mechanisms of fatigue accompanying task failure in response to moderate-, heavy-, severe-, and extreme-intensity cycling. J. Appl. Physiol. (1985) 2022, 133, 323–334. [Google Scholar] [CrossRef]
- Venancio-Dallan, L.P.; Santos-Mariano, A.C.; Cristina-Souza, G.; Schamne, J.C.; Coelho, D.B.; Bertuzzi, R.; Okuno, N.M.; Lima-Silva, A.E. The effect of constant load cycling at extreme- and severe-intensity domains on performance fatigability and its determinants in young female. Sci. Sports 2023, 38, 312.e311. [Google Scholar] [CrossRef]
- Thomas, K.; Goodall, S.; Stone, M.; Howatson, G.; Gibson, A.S.C.; Ansley, L. Central and Peripheral Fatigue in Male Cyclists after 4-, 20-, and 40-km Time Trials. Med. Sci. Sports Exerc. 2015, 47, 537–546. [Google Scholar] [CrossRef]
- Collins, B.W.; Pearcey, G.E.P.; Buckle, N.C.M.; Power, K.E.; Button, D.C. Neuromuscular fatigue during repeated sprint exercise: Underlying physiology and methodological considerations. Appl. Physiol. Nutr. Metab. 2018, 43, 1166–1175. [Google Scholar] [CrossRef]
- Chidnok, W.; Dimenna, F.J.; Bailey, S.J.; Vanhatalo, A.; Morton, R.H.; Wilkerson, D.P.; Jones, A.M. Exercise tolerance in intermittent cycling: Application of the critical power concept. Med. Sci. Sports Exerc. 2012, 44, 966–976. [Google Scholar] [CrossRef]
- Chidnok, W.; DiMenna, F.J.; Fulford, J.; Bailey, S.J.; Skiba, P.F.; Vanhatalo, A.; Jones, A.M. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: Relationship to the critical power concept. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1085–R1092. [Google Scholar] [CrossRef]
- Chidnok, W.; Dimenna, F.J.; Bailey, S.J.; Wilkerson, D.P.; Vanhatalo, A.; Jones, A.M. Effects of Pacing Strategy on Work Done above Critical Power during High-Intensity Exercise. Med. Sci. Sports Exerc. 2013, 45, 1377–1385. [Google Scholar] [CrossRef]
- Alexander, A.M.; Didier, K.D.; Hammer, S.M.; Dzewaltowski, A.C.; Kriss, K.N.; Lovoy, G.M.; Hammer, J.L.; Smith, J.R.; Ade, C.J.; Broxterman, R.M.; et al. Exercise tolerance through severe and extreme intensity domains. Physiol. Rep. 2019, 7, e14014. [Google Scholar] [CrossRef]
- Chorley, A.; Bott, R.P.; Marwood, S.; Lamb, K.L. Physiological and anthropometric determinants of critical power, W′ and the reconstitution of W′ in trained and untrained male cyclists. Eur. J. Appl. Physiol. 2020, 120, 2349–2359. [Google Scholar] [CrossRef]
- Caen, K.; Bourgois, G.; Dauwe, C.; Blancquaert, L.; Vermeire, K.; Lievens, E.; JO, V.A.N.D.; Derave, W.; Bourgois, J.G.; Pringels, L.; et al. W’recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness. Med. Sci. Sports Exerc. 2021, 53, 1911–1921. [Google Scholar] [CrossRef]
- Hoff, J.; Støren, Ø.; Finstad, A.; Wang, E.; Helgerud, J. Increased Blood Lactate Level Deteriorates Running Economy in World Class Endurance Athletes. J. Strength. Cond. Res. 2016, 30, 1373–1378. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—Part II: Recommendations for training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Buchheit, M.; Hader, K.; Mendez-Villanueva, A. Tolerance to high-intensity intermittent running exercise: Do oxygen uptake kinetics really matter? Front. Physiol. 2012, 3, 406. [Google Scholar] [CrossRef]
- Buchheit, M. Repeated-sprint performance in team sport players: Associations with measures of aerobic fitness, metabolic control and locomotor function. Int. J. Sports Med. 2012, 33, 230–239. [Google Scholar] [CrossRef]
- Blondel, N.; Berthoin, S.; Billat, V.; Lensel, G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int. J. Sports Med. 2001, 22, 27–33. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Seeberg, T.M.; Kocbach, J.; Danielsen, J.; Noordhof, D.A.; Skovereng, K.; Haugnes, P.; Tjønnås, J.; Sandbakk, Ø. Physiological and Biomechanical Determinants of Sprint Ability Following Variable Intensity Exercise When Roller Ski Skating. Front. Physiol. 2021, 12, 638499. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Etxebarria, N.; Anson, J.M.; Pyne, D.B.; Ferguson, R.A. High-intensity cycle interval training improves cycling and running performance in triathletes. Eur. J. Sport. Sci. 2014, 14, 521–529. [Google Scholar] [CrossRef]
- Kristoffersen, M.; Sandbakk, Ø.; Rønnestad, B.R.; Gundersen, H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front. Physiol. 2019, 10, 1132. [Google Scholar] [CrossRef]
- Edge, J.; Hill-Haas, S.; Goodman, C.; Bishop, D. Effects of Resistance Training on H+ Regulation, Buffer Capacity, and Repeated Sprints. Med. Sci. Sports Exerc. 2006, 38, 2004–2011. [Google Scholar] [CrossRef]
- Jones, A.M. The fourth dimension: Physiological resilience as an independent determinant of endurance exercise performance. J. Physiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Faelli, E.L.; Ruggeri, P.; Filipas, L.; Codella, R.; Plews, D.J.; Maunder, E. Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Spragg, J.; Leo, P.; Giorgi, A.; Gonzalez, B.M.; Swart, J. The intensity rather than the quantity of prior work determines the subsequent downward shift in the power duration relationship in professional cyclists. Eur. J. Sport Sci. 2024, 24, 449–457. [Google Scholar] [CrossRef]
- Ozkaya, O.; Jones, A.M.; Burnley, M.; As, H.; Balci, G.A. Different categories of VO2 kinetics in the ‘extreme’ exercise intensity domain. J. Sports Sci. 2023, 41, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Candow, D.G.; Neto, J.H.F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine supplementation and endurance performance: Surges and sprints to win the race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef] [PubMed]
- Tomcik, K.A.; Camera, D.M.; Bone, J.L.; Ross, M.L.; Jeacocke, N.A.; Tachtsis, B.; Senden, J.; LJC, V.A.N.L.; Hawley, J.A.; Burke, L.M. Effects of Creatine and Carbohydrate Loading on Cycling Time Trial Performance. Med. Sci. Sports Exerc. 2018, 50, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Olsen, P.D.; Marshall, H.C.; Lizamore, C.A.; Elliot, C.A. Hypoxic Repeat Sprint Training Improves Rugby Player’s Repeated Sprint but Not Endurance Performance. Front. Physiol. 2017, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Mckee, J.R.; Girard, O.; Peiffer, J.J.; Scott, B.R. Repeated-Sprint Training With Blood Flow Restriction: A Novel Approach to Improve Repeated-Sprint Ability? Strength Cond. J. 2023, 45, 598–607. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Bishop, D.J. Sprint performance under heat stress: A review. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 79–89. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Millet, G.P. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med. 2017, 47, 1931–1949. [Google Scholar] [CrossRef]
- Furley, P.; Goldschmied, N. Systematic vs. Narrative Reviews in Sport and Exercise Psychology: Is Either Approach Superior to the Other? Front. Psychol. 2021, 12, 685082. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Thorne, S.; Malterud, K. Time to challenge the spurious hierarchy of systematic over narrative reviews? Eur. J. Clin. Investig. 2018, 48, e12931. [Google Scholar] [CrossRef] [PubMed]
Factors Contributing to Surges | Effect on Variable Pacing Pattern | Influence on Characteristics of Surges | Sports Influenced by It |
---|---|---|---|
Changes in elevation/topography | Variations in intensity according to the duration and length of the climb | Performance of short- (<15 s) (MTB), moderate- (30 s to 2 min), and long- (>2 min) (XC skiing, road cycling) efforts during the race | MTB, XC skiing, Road cycling |
Course’s characteristics | Repetitive accelerations, tight turns, dangerous curves, technical sections | Performance of multiple short (<15 s) efforts | Triathlon, MTB |
Race format | Mass start races, competing in shorter loops | Performance of multiple short (<15 s) efforts, end-spurt determines winner | MTB, XC skiing, Road cycling |
Race tactics/dynamics | Tactical positioning, breakaways, pack riding | Longer and more intense surges in first lap (tactical positioning), less intense and shorter surges earlier in the race (breakaway), higher number of surges prior to finishing sprint, need to sustain higher intensity following surge later in the race | MTB, XC skiing, Road Cycling, Triathlon |
Study | Participants and Competition Level | Race Characteristics | Characteristics of Surges | Time Spent/Work Done in Each Intensity Zone | ||||
---|---|---|---|---|---|---|---|---|
Distance/Average Duration | Average Intensity | Number | Duration | Intensity | Recovery Duration/Work to Rest Ratio | |||
Triathlon | ||||||||
Mixed Relay (MR) | ||||||||
Sharma & Périard [34] | 4 elite (2 males, 2 females) World Championships | Males: 10.5 min Females: 11.5 min | NR | 11 and 12 (males) 17 and 8 (females) | NR | >650 W >400 W (8 W/kg) | NR | 48% and 62% above 85% 4MMAP (males) 58% and 64% above 85% 4MMAP (females) |
Sprint (SD) and Olympic Distance (OD) | ||||||||
Bernard et al. [16] | 10 Elite triathletes (5 males, 5 females) World Cup | 40 km 72 min females 63 min males | 66.0 ± 7.1% MAP L1-L2 60.7 ± 9.1% MAP L3-L4 52.7 ± 7.5% MAP L5-L6 | 44 13 13 | 7 s 15 s 7 s | >100% MAP >100% MAP >60% MAnP | Z1: 51 ± 9% Z2: 17 ± 6% Z3: 15 ± 3% Z4: 17 ± 6% | |
Etxebarria et al. [20] | 5 elite male triathletes (12 race profiles from 7 ITU international races) | 40 km | 252 ± 33 W (3.9 ± 0.5 W/kg) | 34 ± 14 * | NR | >600 W | NR | NR |
Cejuela et al. [30] | 4 male triathletes 13 WTS races (6 SD, 8OD) Tokyo 2021 Olympic Games (OD) | Approx. 40 km (average of 8.86 laps per race) for OD Approx. 20 km (average of 5.4 laps per race) for SD | 58.3% MAP (mean power) 65% MAP (normalized power) Athlete’s mean MAP across study: 450 W | Average of 13.9 ± 3.6 peaks (surges) per km | NR | Peaks reported as efforts above MAP Power profile during races— 5 s MMP: 795 ± 102 W (approx. 176% MAP) 30 s MMP: 499 ± 62 W (approx. 110% MAP) 60 s MMP: 411 ± 48 W (approx. 91% MAP) | NR | Time Z1: 51.9 ± 6.5% Z2: 17.3 ± 3.9% Z3: 13.3 ± 2.6% Z4: 17.4 ± 5.0 Work done Z1: 22.0 ± 5.8% Z2: 20.4 ± 4.0% Z3: 20.0 ± 3.5% Z4: 37.5 ± 10% |
Smith et al. [42] | 3 elite triathletes (1 male, 2 females) ITU World Cup | 40 km (6 laps) | Male: 238.3 ± 167.4 W Female 1: 229 ± 111 W Female 2: 225 ± 124 W | Male: 8 (a single lap) Females: Numerous per lap (NR) | NR | Male: 600 W (threshold power estimated to be 320–350 W) Females: >500 W | NR | |
Mountain Biking | ||||||||
Granier et al. [10] | 8 male (5 U23, 3 elite) 13 international races | 5 to 8 laps 28.15 ± 5.41 km 90 ± 9 min | 283 ± 22 W 68 ± 5% MAP | 18 ± 4 (per lap) | 10 s $ | 559 ± 46 W | Every 40 ± 14 s | Z1: 25 ±5% Z2: 21 ± 4% Z3: 13 ± 3% Z4: 16 ±3% Z5: 26 ± 5% |
Næss et al. [13] | 5 male, 2 females (23.4 years, 68.5 kg), National Standard | 3.8 km Loop 19 km for females (5 laps) 23 km for males (6 laps) 96 ± 7 min (lap time: 16 ± 2 min) | 249 ± 63 W 3.6 ± 0.7 W 180 ± 4 bpm 63 ± 4% MAP 76 ± 9% CP | Approx. 90 per lap (above CP, not supramaximal) Starting loop had 17 ± 3 | 8 s (5.2–11.6) | 1.18 to 1.41 (Fraction of CP) SL: 1.41 ± 0.07 Remainder of race has an average of 1.2 | NR | Zero PO: 27% ± 3% Time > CP: 40 ± 8% Time > MAP: 26 ± 8% |
Hays et al. [21] | 16 male juniors or U23 (national or international level) Simulated race in official racetrack | 3 laps (5.1 km) Simulated: 64 ± 1.5 min Competition: 66 ± 2 min | NR | 22.1 11.8 5.7 3.1 1.8 | 1–5 s 5–10 s 11–15 s 16–20 s >20 s | >MAP (specific intensity not reported) | NR | L1, L2, L3, respectively: NP: 18.8 ± 4.3%, 18.9 ± 4.6%, 19.8 ± 6.0% Z1: 27.0 ± 8.1%, 31.2 ± 9.8%, 33.5 ± 10.2% Z2: 11.9 ± 4.9%, 12.3 ± 5.2%, 13.6 ± 5.0% Z3: 9.5 ± 5.1%, 9.7 ± 4.3%, 9.1 ± 4.5% Z4: 32.8 ± 8.2%, 27.9 ± 7.9%, 24.0 ± 8.2% |
Road Cycling | ||||||||
Peiffer et al. [8] | 7 professional female cyclists | 31 races where the rider of interest finished in the top-5. Average race time of 179.4 ± 33.4 min | 167 ± 24 W | 68 efforts above 80% of the maximal final sprint (numerous 5-, 15-, 30-, 60-, 240-, and 600-second efforts above 80% MMP80 also occurred) | 15 s | >80% of MSP 80 (80% of the PO of the final sprint) Other sprints were above 80% of mean maximal power for specific duration. | NR | NR |
XC Skiing # | ||||||||
Sprint Skiing | ||||||||
Sandbaak et al. [28] | 12 elite male XC skiers (3 WCs) | 240 ± 5 s (234–248); 1820 m. | 3 (S3, S4, S7) | S3: 18.8 ± 0.5 s S4: 51.4 ± 2.3 s S7: 15.0 ± 0.7 s Total of 85.2 ± 3.1 s | 160% VO2max (476 ± 42 W) for S4 Not reported for S3 and S7. | NR (S5 + S6, approx. 50 s–1:1) | NR 36% Uphill (>MAP) 27% Flat 30% Downhill 7% Curved | |
Ihalainen et al. [38] | 11 female XC skiers (Scandinavian Cup) | 250.4 ± 5.8 s | NR | 3 (S2, S5, S7) | S3: 21.1 ± 0.9 s S5: 22.1 ± 0.9 s S7: 38.2 ± 2.0 s | NR | NR S3 + S4: approx. 41.5 s S6: 14.1 s | NR |
Distance Skiing | ||||||||
Sandbaak et al. [39] | 10 elite females (highest ranked in the world to top-15 Norway) VO2max = 68.0 ± 4.8 mL/kg/min | 10 km (2 × 5-km laps) Total of 56% uphill (483 ± 31 s), 16% flat (193 + 10 s), 28% downhill (218 ± 8 s) Total of 894 s | NR | 5 (per lap) | S3: 42 ± 2 s S5: 41 ± 3 s S7: 162 ± 10 s S9: 152 ± 11 s S14: 85 ± 4 s Total of 483 ± 31 s | NR | S4 = 25 s (downhill) S6: 46 s (downhill) S8: 31 s (downhill) S10–S13: 128 s (downhill and flat) | NR 56% uphill (>CP/MAP) 16% flat 28% downhill |
Staunton et al. [40] | 19 (9 female, 10 male) tier 3 athletes, FIS-sanctioned | Approx. 4900 m per lap Men: 3 laps (14,678 m) Women: 2 laps (9743 m) Total of 165 m of climbing Total Time Women: 28 min 44 ± 58 s Men: 38 min 37 ± 57 s | NR | 4 (per lap) S1, S3, S5, S7 | Women S1: 226 ± 10 s S3: 67 ± 3 s S5: 243 ± 11 s S7: 61 ± 3 s Men S1: 194 ± 5 s S3: 56 ± 2 s S5: 210 ± 10 s S7: 52 ± 2 s | NR | Women S2: 102 ± 2 s S4: 36 ± 1 s S6: 55 ± 1 s S8 + S9: 86 s Men S2: 94 ± 3 S4: 33 ± 1 s S6: 51 ± 1 S8 + S9: 78 s | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falk Neto, J.H.; Faulhaber, M.; Kennedy, M.D. The Characteristics of Endurance Events with a Variable Pacing Profile—Time to Embrace the Concept of “Intermittent Endurance Events”? Sports 2024, 12, 164. https://doi.org/10.3390/sports12060164
Falk Neto JH, Faulhaber M, Kennedy MD. The Characteristics of Endurance Events with a Variable Pacing Profile—Time to Embrace the Concept of “Intermittent Endurance Events”? Sports. 2024; 12(6):164. https://doi.org/10.3390/sports12060164
Chicago/Turabian StyleFalk Neto, Joao Henrique, Martin Faulhaber, and Michael D. Kennedy. 2024. "The Characteristics of Endurance Events with a Variable Pacing Profile—Time to Embrace the Concept of “Intermittent Endurance Events”?" Sports 12, no. 6: 164. https://doi.org/10.3390/sports12060164
APA StyleFalk Neto, J. H., Faulhaber, M., & Kennedy, M. D. (2024). The Characteristics of Endurance Events with a Variable Pacing Profile—Time to Embrace the Concept of “Intermittent Endurance Events”? Sports, 12(6), 164. https://doi.org/10.3390/sports12060164