Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Sampling
2.2. Socio-Demographic Factors
2.3. Health and Disease-Related Factors
2.4. Dynapenia Definitions
2.5. Data Analysis
3. Results
3.1. Dynapenia Prevalence and Socio-Demographic Characteristics
3.2. Health and Disease-Related Characteristics
3.3. Factors for Hand-Grip-Determined Dynapenia
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, B.C.; Manini, T.M. What is dynapenia? Nutrition 2012, 28, 495–503. [Google Scholar] [CrossRef]
- Ebner, N.; Sliziuk, V.; Scherbakov, N.; Sandek, A. Muscle wasting in ageing and chronic illness. ESC Heart Fail. 2015, 2, 58–68. [Google Scholar] [CrossRef]
- Kwak, D.; Thompson, L.V. Frailty: Past, present, and future? Sports Med. Health Sci. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Lee, D.-Y. The association between sarcopenia and pulmonary function in Koreans: A cross-sectional study. Int. J. Gerontol 2021, 15, 319–323. [Google Scholar]
- Lee, D.Y.; Shin, S. Association of Sarcopenia with Osteopenia and Osteoporosis in Community-Dwelling Older Korean Adults: A Cross-Sectional Study. J. Clin. Med. 2021, 11, 129. [Google Scholar] [CrossRef]
- Lee, D.Y.; Shin, S. Association between Chronic Kidney Disease and Dynapenia in Elderly Koreans. Healthcare 2023, 11, 2976. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Sarcopenia =/= dynapenia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef]
- Guida, B.; Maro, M.D.; Lauro, M.D.; Lauro, T.D.; Trio, R.; Santillo, M.; Belfiore, A.; Memoli, A.; Cataldi, M. Identification of sarcopenia and dynapenia in CKD predialysis patients with EGWSOP2 criteria: An observational, cross-sectional study. Nutrition 2020, 78, 110815. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef]
- Mehmet, H.; Yang, A.W.H.; Robinson, S.R. Measurement of hand grip strength in the elderly: A scoping review with recommendations. J. Bodyw. Mov. Ther. 2020, 24, 235–243. [Google Scholar] [CrossRef]
- Halaweh, H. Correlation between Health-Related Quality of Life and Hand Grip Strength among Older Adults. Exp. Aging Res. 2020, 46, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Laudisio, A.; Giovannini, S.; Finamore, P.; Loreti, C.; Vannetti, F.; Coraci, D.; Incalzi, R.A.; Zuccal, G.; Macchi, C.; Padua, L. Muscle strength is related to mental and physical quality of life in the oldest old. Arch. Gerontol. Geriatr. 2020, 89, 104109. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Borges, V.S.; Lima-Costa, M.F.F.; Andrade, F.B. A nationwide study on prevalence and factors associated with dynapenia in older adults: ELSI-Brazil. Cad. Saude Publica 2020, 36, e00107319. [Google Scholar] [CrossRef]
- Neves, T.; Ferriolli, E.; Lopes, M.B.M.; Souza, M.G.C.; Fett, C.A.; Fett, W.C.R. Prevalence and factors associated with sarcopenia and dynapenia in elderly people. J. Frailty Sarcopenia Falls 2018, 3, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.V.N.; Santos, L.d.; Pedreira, R.B.S.; Miranda, C.G.M.; Fernandes, M.H.; Carneiro, J.A.O. Prevalence and factors associated with dynapenia in older women using different diagnostic criteria. Mot. Rev. Educ. Física 2022, 28, e10220005822. [Google Scholar] [CrossRef]
- Lee, D.Y.; Nam, S.M. Association between restrictive pulmonary disease and type 2 diabetes in Koreans: A cross-sectional study. World J. Diabetes 2020, 11, 425–434. [Google Scholar] [CrossRef]
- Lee, D.Y.; Shin, S. Sarcopenia and Anemia in Elderly Koreans: A Nationwide Population-Based Study. Healthcare 2023, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Shin, S. Sarcopenic obesity is associated with coffee intake in elderly Koreans. Front. Public Health 2023, 11, 990029. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Kuh, D.; Cooper, C.; Sayer, A.A. Global variation in grip strength: A systematic review and meta-analysis of normative data. Age Ageing 2016, 45, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Forrest, K.Y.; Zmuda, J.M.; Cauley, J.A. Patterns and determinants of muscle strength change with aging in older men. Aging Male Off. J. Int. Soc. Study Aging Male 2005, 8, 151–156. [Google Scholar] [CrossRef]
- Stenholm, S.; Tiainen, K.; Rantanen, T.; Sainio, P.; Heliövaara, M.; Impivaara, O.; Koskinen, S. Long-term determinants of muscle strength decline: Prospective evidence from the 22-year mini-Finland follow-up survey. J. Am. Geriatr. Soc. 2012, 60, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Nahhas, R.W.; Choh, A.C.; Lee, M.; Chumlea, W.M.; Duren, D.L.; Siervogel, R.M.; Sherwood, R.J.; Towne, B.; Czerwinski, S.A. Bayesian longitudinal plateau model of adult grip strength. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2010, 22, 648–656. [Google Scholar] [CrossRef]
- Cooper, R.; Tomlinson, D.; Hamer, M.; Pinto Pereira, S.M. Lifetime body mass index and grip strength at age 46 years: The 1970 British Cohort Study. J. Cachexia Sarcopenia Muscle 2022, 13, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Massy-Westropp, N.M.; Gill, T.K.; Taylor, A.W.; Bohannon, R.W.; Hill, C.L. Hand Grip Strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef]
- Amo-Setién, F.J.; Leal-Costa, C.; Abajas-Bustillo, R.; González-Lamuño, D.; Redondo-Figuero, C. Factors associated with grip strength among adolescents: An observational study. J. Hand Ther. Off. J. Am. Soc. Hand Ther. 2020, 33, 96–102. [Google Scholar] [CrossRef]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar] [CrossRef]
- Kuzuya, M. Nutritional status related to poor health outcomes in older people: Which is better, obese or lean? Geriatr. Gerontol. Int. 2021, 21, 5–13. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, C.; Momma, H.; Sugiyama, S.; Niu, K.; Nagatomi, R. The longitudinal association between alcohol consumption and muscle strength: A population-based prospective study. J. Musculoskelet. Neuronal Interact. 2019, 19, 294–299. [Google Scholar]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlikova, E.; Holmerova, I. Alcohol consumption as a risk factor for sarcopenia—A meta-analysis. BMC Geriatr. 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, S.; Li, S.; Sun, Y.; Sun, Y.; Zhang, D.; Wu, Y. Alcohol consumption and functional limitations in older men: Does muscle strength mediate them? J. Am. Geriatr. Soc. 2019, 67, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Ninomiya, D.; Senzaki, K.; Kumagi, T. Alcohol consumption is positively associated with handgrip strength among Japanese community-dwelling middle-aged and elderly persons. Int. J. Gerontol. 2018, 12, 294–298. [Google Scholar] [CrossRef]
- Pothisiri, W.; Prasitsiriphon, O.; Saikia, N.; Aekplakorn, W. Education and grip strength among older Thai adults: A mediation analysis on health-related behaviours. SSM-Popul. Health 2021, 15, 100894. [Google Scholar] [CrossRef]
- Syddall, H.E.; Westbury, L.D.; Shaw, S.C.; Dennison, E.M.; Cooper, C.; Gale, C.R. Correlates of Level and Loss of Grip Strength in Later Life: Findings from the English Longitudinal Study of Ageing and the Hertfordshire Cohort Study. Calcif. Tissue Int. 2018, 102, 53–63. [Google Scholar] [CrossRef]
- Vincent, K.R.; Braith, R.W.; Feldman, R.A.; Magyari, P.M.; Cutler, R.B.; Persin, S.A.; Lennon, S.L.; Gabr, A.H.; Lowenthal, D.T. Resistance exercise and physical performance in adults aged 60 to 83. J. Am. Geriatr. Soc. 2002, 50, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, I.H.; Reid, C.M.; Yeater, R.A. Increased HDL-cholesterol levels with a weight lifting program. South. Med. J. 1987, 80, 328–331. [Google Scholar] [CrossRef]
- Wu, H.; Liu, M.; Chi, V.T.Q.; Wang, J.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Bao, X.; Gu, Y.; et al. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: A large-scale population-based study. Metab. Clin. Exp. 2019, 93, 61–67. [Google Scholar] [CrossRef]
- Hu, S.; Gu, Y.; Lu, Z.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Wu, H.; Bao, X.; Chi, V.T.Q.; et al. Relationship Between Grip Strength and Prediabetes in a Large-Scale Adult Population. Am. J. Prev. Med. 2019, 56, 844–851. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Isiozor, N.M.; Khan, H.; Laukkanen, J.A. Handgrip strength-A risk indicator for type 2 diabetes: Systematic review and meta-analysis of observational cohort studies. Diabetes/Metab. Res. Rev. 2021, 37, e3365. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.G., 3rd; Tanner, R.J.; Anton, S.D.; Jo, A. Grip Strength as a Marker of Hypertension and Diabetes in Healthy Weight Adults. Am. J. Prev. Med. 2015, 49, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Buscemi, A.; Forrester, L.; Hafer-Macko, C.E.; Ivey, F.M. Atrophy and intramuscular fat in specific muscles of the thigh: Associated weakness and hyperinsulinemia in stroke survivors. Neurorehabilit. Neural Repair 2011, 25, 865–872. [Google Scholar] [CrossRef]
- Dos Anjos, D.; Moreira, B.S.; Kirkwood, R.N.; Dias, R.C.; Pereira, D.S.; Pereira, L.S.M. Effects of aerobic exercise on functional capacity, anthropometric measurements and inflammatory markers in diabetic elderly women. J. Bodyw. Mov. Ther. 2017, 21, 509–516. [Google Scholar] [CrossRef]
- Al-Shreef, F.M.; Al-Jiffri, O.H.; Abd El-Kader, S.M. Bone metabolism and hand grip strength response to aerobic versus resistance exercise training in non-insulin dependent diabetic patients. Afr. Health Sci. 2015, 15, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Olan, A.E.K.A.H.; ve Becerisi, H.E.K.K. The Effect of Aerobic Exercise on Hand Strength and Dexterity of Patients with Coronary Artery Disease. Turk. J. Phys. Med. Rehabil. 2006, 52, 72–75. [Google Scholar]
- Crane, J.D.; Macneil, L.G.; Tarnopolsky, M.A. Long-term aerobic exercise is associated with greater muscle strength throughout the life span. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 631–638. [Google Scholar] [CrossRef]
Variables | Total | 20s | 30s | 40s | 50s | 60s | 70s or Older | |
---|---|---|---|---|---|---|---|---|
Total | Prevalence | 6.3 | 5.3 | 3.2 | 3.3 | 4.8 | 8.9 | 34.6 |
GS (M ± SE) | 33.59 ± 0.11 | 33.54 ± 0.23 | 35.53 ± 0.19 | 34.85 ± 0.17 | 33.48 ± 0.18 | 31.10 ± 0.18 | 25.53 ± 0.25 | |
Men | Prevalence | 4.1 | 3.7 | 1.6 | 1.7 | 2.5 | 5.9 | 21.5 |
GS (M ± SE) | 41.60 ± 0.11 | 41.54 ± 0.23 | 44.50 ± 0.21 | 43.29 ± 0.19 | 41.25 ± 0.17 | 37.70 ± 0.18 | 34.06 ± 0.25 | |
Women | Prevalence | 8.7 | 7 | 5 | 5.1 | 7.5 | 12.5 | 24 |
GS (M ± SE) | 4 | 24.61 ± 0.15 | 25.87 ± 0.12 | 25.77 ± 0.11 | 24.56 ± 0.11 | 23.06 ± 0.14 | 21.77 ± 0.17 |
Factors | Categories | Men | Women | ||||
---|---|---|---|---|---|---|---|
Dynapenia (n = 557) | Normal (n = 9177) | p | Dynapenia (n = 1078) | Normal (n = 10,138) | p | ||
M or % | M or % | M or % | M or % | ||||
Age | Total | 24.04 ± 0.19 | 42.34 ± 0.10 | <0.001 | 15.35 ± 0.08 | 25.58 ± 0.06 | <0.001 |
Education | Low | 70.8 | 40.8 | <0.0001 | 65.6 | 47.6 | <0.0001 |
High | 29.2 | 59.2 | 34.4 | 52.4 | |||
Marital status | with | 46.1 | 62.6 | <0.001 | 51.1 | 63.8 | <0.001 |
without | 53.9 | 37.4 | 48.9 | 36.2 | |||
Individual income | Q1 (Lowest) | 31.6 | 23.4 | <0.001 | 29.5 | 24.3 | 0.008 |
Q2 | 24.3 | 25.4 | 24.1 | 25 | |||
Q3 | 21.9 | 25.9 | 22.1 | 25.5 | |||
Q4 (Highest) | 22.2 | 25.4 | 24.3 | 25.2 |
Factors | Categories | Men | Women | ||||
---|---|---|---|---|---|---|---|
Dynapenia | Normal | p | Dynapenia | Normal | p | ||
M or % | M or % | M or % | M or % | ||||
Grip strength (kg) | 23.76 ± 0.16 | 42.12 ± 0.10 | <0.0001 | 15.37 ± 0.08 | 25.53 ± 0.06 | <0.0001 | |
Height (cm) | 165.22 ± 1.39 | 172.26 ± 0.08 | <0.001 | 154.95 ± 0.26 | 159.51 ± 0.07 | <0.001 | |
Weight (kg) | 62.11 ± 0.63 | 72.90 ± 0.15 | <0.001 | 54.91 ± 0.35 | 58.24 ± 0.11 | <0.001 | |
BMI (kg/m2) | Index | 22.66 ± 0.19 | 24.53 ± 0.04 | <0.001 | 22.88 ± 0.14 | 22.89 ± 0.04 | 0.902 |
Low | 15.1 | 2.7 | <0.0001 | 10.1 | 7.1 | 0.007 | |
Normal | 58 | 56.4 | 64.5 | 69.3 | |||
Overweight | 21.5 | 34.7 | 21.3 | 19.3 | |||
Obesity | 5.4 | 6.2 | 4.1 | 4.3 | |||
Blood pressure (mmHg) | Systolic | 116.86 ± 0.66 | 118.87 ± 0.18 | 0.003 | 115.92 ± 0.67 | 111.69 ± 0.18 | <0.001 |
Diastolic | 71.69 ± 0.46 | 78.24 ± 0.13 | <0.001 | 71.95 ± 0.33 | 72.77 ± 0.12 | 0.018 | |
Hypertension | 23.5 | 32 | <0.001 | 24.8 | 16.6 | <0.001 | |
Fasting glucose (mg/dL) | Index | 101.51 ± 1.21 | 100.94 ± 0.28 | 0.645 | 99.82 ± 0.84 | 94.95 ± 0.21 | <0.001 |
Diabetes | 35.4 | 36.2 | 0.719 | 33 | 21.2 | <0.001 | |
TG | Index | 123.29 ± 3.46 | 163.55 ± 1.81 | <0.001 | 112.05 ± 2.20 | 105.44 ± 0.85 | 0.004 |
High | 28.9 | 39.3 | <0.001 | 21.7 | 16.7 | <0.001 | |
HDL-cholesterol | Index | 48.09 ± 0.48 | 47.84 ± 0.13 | 0.615 | 53.58 ± 0.44 | 56.18 ± 0.15 | <0.001 |
Low | 26.3 | 24.3 | 0.301 | 41.7 | 33.5 | <0.001 | |
WC (cm) | Index | 81.39 ± 0.55 | 85.78 ± 0.12 | <0.001 | 77.94 ± 0.39 | 76.81 ± 0.13 | 0.005 |
abdominal obesity | 24.2 | 31.3 | 0.001 | 26.5 | 19.2 | <0.001 | |
Smoking status | current | 23.6 | 37.8 | <0.0001 | 4.2 | 6 | 0.023 |
past | 28.1 | 33.2 | 5.1 | 6.5 | |||
non | 48.2 | 29 | 90.7 | 87.5 | |||
Alcohol status | Yes | 54.8 | 86.1 | <0.0001 | 52.5 | 72.6 | <0.0001 |
No | 45.2 | 13.9 | 47.5 | 27.4 | |||
Aerobic exercise | TWT | 247.91 ± 19.36 | 248.20 ± 4.67 | 0.988 | 199.96 ± 11.43 | 240.94 ± 4.16 | <0.001 |
Resistance exercise | Never | 80.1 | 68.3 | <0.001 | 90.3 | 85 | <0.001 |
Mid | 9.9 | 14.9 | 5.9 | 9.2 | |||
High | 10 | 16.8 | 3.8 | 5.8 |
Factors | Categories | Crude | Adjusted | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
Age | 20s | 1 | 1 | ||
30s | 0.423 (0.256–0.699) | <0.001 | 0.394 (0.227–0.686) | 0.001 | |
40s | 0.444 (0.2269–0.733) | 0.002 | 0.359 (0.201–0.644) | <0.001 | |
50s | 0.675 (0.445–1.025) | 0.065 | 0.498 (0.306–0.809) | 0.005 | |
60s | 1.641 (1.108–2.431) | 0.014 | 1.136 (0.698–1.849) | 0.61 | |
70s or older | 7.177 (5.208–9.892) | <0.001 | 3.468 (2.307–5.213) | <0.001 | |
Education | Low | 3.512 (2.824–4.368) | <0.001 | 1.512 (1.155–1.979) | 0.003 |
High | 1 | 1 | |||
Marital status | with | 0.510 (0.421–0.617) | <0.001 | 0.968 (0.714–1.314) | 0.833 |
without | 1 | 1 | |||
Individual income | Q1 (Lowest) | 1.546 (1.211–1.975) | <0.001 | 1.373 (1.056–1.784) | 0.018 |
Q2 | 1.096 (0.841–1.428) | 0.496 | 1.006 (0.754–1.341) | 0.972 | |
Q3 | 0.970 (0.737–1.278) | 0.831 | 0.877 (0.65–1.185) | 0.391 | |
Q4 (Highest) | 1 | 1 | |||
BMI (kg/m2) | Low | 5.442 (4.014–7.378) | <0.001 | 2.592 (1.785–3.764) | <0.001 |
Normal | 1 | 1 | |||
Overweight | 0.602 (0.476–0.760) | <0.001 | 0.737 (0.535–1.016) | 0.062 | |
Obesity | 0.836 (0.511–1.367) | 0.475 | 0.986 (0.534–1.82) | 0.963 | |
Blood pressure (mmHg) | Normal | 1 | 1 | ||
Hypertension | 0.652 (0.526–0.808) | <0.001 | 0.815 (0.644–1.032) | 0.089 | |
Fasting glucose (mg/dL) | Normal | 1 | 1 | ||
Diabetes | 0.967 (0.806–1.161) | 0.719 | 1.112 (0.892–1.386) | 0.348 | |
TG | Normal | 1 | 1 | ||
High | 0.628 (0.517–0.762) | <0.001 | 1.044 (0.826–1.319) | 0.723 | |
HDL-C | Normal | 1 | 1 | ||
Low | 1.112 (0.909–1.359) | 0.301 | 1.299 (1.015–1.661) | 0.038 | |
WC (cm) | Normal | 1 | 1 | ||
abdominal obesity | 0.702 (0.564–0.873) | 0.001 | 1.014 (0.729–1.411) | 0.936 | |
Smoking status | current | 0.376 (0.296–0.479) | <0.001 | 0.943 (0.690–1.288) | 0.708 |
past | 0.510 (0.410–0.634) | <0.001 | 1.069 (0.805–1.419) | 0.646 | |
non | 1 | 1 | |||
Alcohol status | Yes | 0.196 (0.162–0.236) | <0.001 | 0.437 (0.348–0.548) | <0.001 |
No | 1 | 1 | |||
Aerobic exercise | TWT | 1.000 (0.997–1.003) | 0.988 | 1.001 (0.998–1.004) | 0.683 |
Resistance exercise | Never | 1.984 (1.494–2.635) | <0.001 | 2.386 (1.771–3.214) | <0.001 |
Mid | 1.128 (0.739–1.723) | 0.577 | 1.208 (0.766–1.903) | 0.417 | |
High | 1 | 1 |
Factors | Categories | Crude | Adjusted | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
Age | 20s | 1 | 1 | ||
30s | 0.697 (0.521–0.931) | 0.014 | 0.623 (0.458–0.846) | 0.002 | |
40s | 0.708 (0.531–0.944) | 0.019 | 0.586 (0.434–0.79) | <0.001 | |
50s | 1.077 (0.809–1.433) | 0.613 | 0.754 (0.536–1.06) | 0.104 | |
60s | 1.890 (1.418–2.519) | <0.001 | 1.089 (0.771–1.539) | 0.63 | |
70s or older | 4.181 (3.263–5.358) | <0.001 | 2.392 (1.751–3.267) | <0.001 | |
Education | Low | 2.105 (1.780–2.490) | <0.001 | 1.197 (0.966–1.484) | 0.101 |
High | 1 | 1 | |||
Marital status | with | 0.595 (0.513–0.690) | <0.001 | 0.941 (0.782–1.133) | 0.52 |
without | 1 | 1 | |||
Individual income | Q1 (Lowest) | 1.257 (1.033–1.529) | 0.022 | 1.155 (0.944–1.413) | 0.163 |
Q2 | 0.998 (0.804–1.238) | 0.982 | 0.966 (0.77–1.213) | 0.763 | |
Q3 | 0.895 (0.727–1.103) | 0.3 | 0.869 (0.699–1.08) | 0.204 | |
Q4 (Highest) | 1 | 1 | |||
BMI (kg/m2) | Low | 1.526 (1.156–2.016) | 0.003 | 1.423 (1.055–1.919) | 0.021 |
Normal | 1 | 1 | |||
Overweight | 1.187 (0.995–1.415) | 0.056 | 0.781 (0.627–0.974) | 0.028 | |
Obesity | 1.029 (0.726–1.458) | 0.873 | 0.594 (0.405–0.871) | 0.008 | |
Blood pressure (mmHg) | Normal | 1 | 1 | ||
Hypertension | 1.663 (1.412–1.960) | <0.001 | 1.187 (0.994–1.418) | 0.06 | |
Fasting glucose (mg/dL) | Normal | 1 | 1 | ||
Diabetes | 1.833 (1.565–2.146) | <0.001 | 1.476 (1.242–1.754) | <0.001 | |
TG | Normal | 1 | 1 | ||
High | 1.388 (1.177–1.638) | <0.001 | 1.14 (0.939–1.384) | 0.187 | |
HDL-C | Normal | 1 | 1 | ||
Low | 1.419 (1.235–1.630) | <0.001 | 1.084 (0.93–1.264) | 0.305 | |
WC (cm) | Normal | 1 | 1 | ||
abdominal obesity | 1.521 (1.296–1.785) | <0.001 | 1.419 (1.146–1.758) | 0.001 | |
Smoking status | current | 0.671 (0.484–0.931) | 0.017 | 0.861 (0.608–1.218) | 0.395 |
past | 0.759 (0.540–1.066) | 0.111 | 1.07 (0.75–1.529) | 0.71 | |
non | 1 | 1 | |||
Alcohol status | Yes | 0.417 (0.358–0.485) | <0.001 | 0.655 (0.553–0.776) | <0.001 |
No | 1 | 1 | |||
Aerobic exercise | TWT | 0.995 (0.991–0.999) | 0.011 | 0.996 (0.993–0.999) | 0.02 |
Resistance exercise | Never | 1.621 (1.112–2.364) | 0.012 | 1.375 (0.931–2.031) | 0.109 |
Mid | 0.978 (0.616–1.552) | 0.924 | 0.976 (0.606–1.571) | 0.917 | |
High | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-Y. Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study. Sports 2024, 12, 187. https://doi.org/10.3390/sports12070187
Lee D-Y. Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study. Sports. 2024; 12(7):187. https://doi.org/10.3390/sports12070187
Chicago/Turabian StyleLee, Do-Youn. 2024. "Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study" Sports 12, no. 7: 187. https://doi.org/10.3390/sports12070187
APA StyleLee, D. -Y. (2024). Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study. Sports, 12(7), 187. https://doi.org/10.3390/sports12070187