Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirth, B.; Schweinhardt, P. Personalized assessment and management of non-specific low back pain. Eur. J. Pain. 2024, 28, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.C.; Chenot, J.F.; van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Koes, B.W.; van Tulder, M.; Lin, C.-W.C.; Macedo, L.G.; McAuley, J.; Maher, C. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. Eur. Spine J. 2010, 19, 2075–2094. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH); National Institute of Neurological Disorders and Stroke. Low Back Pain Fact Sheet. 2020. Available online: https://www.ninds.nih.gov/sites/default/files/migrate-documents/low_back_pain_20-ns-5161_march_2020_508c.pdf (accessed on 26 April 2024).
- Hanney, W.J.; Masaracchio, M.; Liu, X.; Kolber, M.J. The influence of physical therapy guideline adherence on healthcare utilization and costs among patients with low back pain: A systematic review of the literature. PLoS ONE 2016, 11, e0156799. [Google Scholar] [CrossRef] [PubMed]
- Ortiz García, A.; Humbría Mendiola, A.; Carmona, L.; Peña Sagredo, J.L.; Ortiz, A. Impacto poblacional del dolor lumbar en España: Resultados del estudio EPISER. Rev. Esp. Reumatol. 2002, 29, 471. [Google Scholar]
- Luomajoki, H.; Pfeiffer, F.; Benz, T. Low Back Pain—Value of Prevention and Physiotherapy? Ther. Umsch. 2023, 80, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Corp, N.; Mansell, G.; Stynes, S.; Wynne-Jones, G.; Morsø, L.; Hill, J.C.; van der Windt, D.A. Evidence-based treatment recommendations for neck and low back pain across Europe: A systematic review of guidelines. Eur. J. Pain 2021, 25, 275–295. [Google Scholar] [CrossRef]
- Owen, P.J.; Miller, C.T.; Mundell, N.L.; Verswijveren, S.J.J.M.; Tagliaferri, S.D.; Brisby, H.; Bowe, S.J.; Belavy, D.L. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br. J. Sports Med. 2020, 54, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, J.M.; Calvo-Muñoz, I.; Gómez-Conesa, A.; López-López, J.A. Effectiveness of physiotherapy interventions for back care and the prevention of non-specific low back pain in children and adolescents: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2022, 23, 314. [Google Scholar] [CrossRef]
- Arcanjo, F.L.; Martins, J.V.P.; Moté, P.; Leporace, G.; de Oliveira, D.A.; de Sousa, C.S.; Saquetto, M.B.; Gomes-Neto, M. Proprioceptive neuromuscular facilitation training reduces pain and disability in individuals with chronic low back pain: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2022, 46, 101505. [Google Scholar] [CrossRef]
- Tong, M.H.; Mousavi, S.J.; Kiers, H.; Ferreira, P.; Refshauge, K.; van Dieën, J. Is there a relationship between lumbar proprioception and low back pain? A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2017, 98, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, K.L.; Laskowski, E.R.; Yu, B.; Larson, D.R.; An, K.N. Repositioning error in low back pain; comparing trunk repositioning error in subjects with chronic low back pain and control subjects. Spine 2000, 25, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Koumantakis, G.A.; Watson, P.J.; Oldham, J.A. Trunk muscle stabilization training plus general exercise versus general exercise only: Randomized controlled trial of patients with recurrent low back pain. Phys. Ther. 2005, 85, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Bloxham, S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back Pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.S.; Mengshoel, A.M. Assessments of lumbar flexion range of motion: Intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine 2014, 39, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Turci, A.M.; Nogueira, C.G.; Nogueira Carrer, H.C.; Chaves, T.C. Self-administered stretching exercises are as effective as motor control exercises for people with chronic non-specific low back pain: A randomised trial. J. Physiother. 2023, 69, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Buckup, K. Pruebas Clínicas Para Patología Ósea, Articular y Muscular; Exploraciones-Signos-Síntomas, 2nd ed.; Editorial Masson: Dortmund, Germany, 2002. [Google Scholar]
- Norkin, C.; White, C.J. Goniometría. Evaluación de la Movilidad Articular; Editorial Marban: Madrid, Spain, 2006; pp. 378–380. [Google Scholar]
- Quack, C.; Schenk, P.; Laeubli, T.; Spillmann, S.; Hodler, J.; Michel, B.A.; Klipstein, A. Do MRI findings correlate with mobility tests? An explorative analysis of the test validity with regard to structure. Eur. Spine J. 2007, 16, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Alaminos-Torres, A.; Martinez-Lorca, M.; Sifre De Sola, I.; López-Ejeda, N.; Dolores Marrodán, M. Psychological distress in Spanish airline pilots during the aviation crisis caused by the COVID-19 pandemic and psychometric analysis of the 12-item general health questionnaire. Ergonomics 2022, 65, 741–752. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Muriel, A.; Medina, J.M.; Abraira, V.; Sánchez, M.D.; Jaúregui, J.O. Spanish Back Pain Research Network. Psychometric characteristics of the Spanish versión of the FAB questionnaire. Spine 2006, 31, 104–110. [Google Scholar] [CrossRef]
- Gusi, N.; del Pozo-Cruz, B.; Olivares, P.; Hernández-Mocholi, M.; Hill, J.C. The Spanish version of the “STarT Back Screening Tool” (SBST) in different subgroups. Aten. Prim. 2011, 43, 356–361. [Google Scholar]
- Carrera, Y. Cuestionario Internacional de actividad físicas (IPAQ). Rev. Enferm. Trab. 2017, 7, 49–54. [Google Scholar]
- Fujiwara, A.; Lim, T.-H.; An, H.S.; Tanaka, N.; Jeon, C.-H.; Andersson, G.B.J.; Haughton, V.M. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25, 3036–3044. [Google Scholar] [CrossRef]
- Breen, A.; Nematimoez, M.; Branney, J.; Breen, A. Passive intervertebral restraint is different in patients with treatment-resistant chronic nonspecific low back pain: A retrospective cohort study and control comparison. Eur. Spine J. 2024, 33, 2405–2419. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.I.; Miller, T.T.; Kim, H.J.; Barlow, B.T.; Wright, T.M.; Padgett, D.E.; Jerabek, S.A.; Mayman, D.J. Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty? Clin. Orthop. Relat. Res. 2016, 474, 1788–1797. [Google Scholar] [CrossRef]
- Perret, C.; Poiraudeau, S.; Fermanian, J.; Colau, M.M.; Benhamou, M.A.; Revel, M. Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch. Phys. Med. Rehabil. 2001, 82, 1566–1570. [Google Scholar] [CrossRef]
- Antero, H.; Beatriz, M.; Beltran, B.; Careddu, S.; Michael, C. Musculoskeletal Science and Practice Review article Effectiveness of movement control exercise on patients with non-specific low back pain and movement control impairment: A systematic review and. Musculoskelet. Sci. Pract. 2018, 36, 1–11. [Google Scholar]
- Henry, S.M.; Dillen, L.R.; Trombley, A.R.; Dee, J.M.; Bunn, J.Y. Reliability of novice raters in using the movement system impairment approach to classify people with low back pain. Man. Ther. 2013, 18, 35–40. [Google Scholar] [CrossRef]
- Crosbie, J.; de Faria Negrão Filho, R.; Nascimento, D.P.; Ferreira, P. Coordination of Spinal Motion in the Transverse and Frontal planes during walking in people with and without recurrent low back pain. Spine 2013, 38, E286–E292. [Google Scholar] [CrossRef] [PubMed]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Cornaz, F.; Widmer, J.; Farshad-Amacker, N.A.; Spirig, J.M.; Snedeker, J.G.; Farshad, M. Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments. Spine J. 2021, 21, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.-J.; Noh, K.-H.; Kang, M.-H.; Oh, J.-S. Differences in performance on the functional movement screen between chronic low back pain patients and healthy control subjects. J. Phys. Ther. Sci. 2016, 28, 2094–2096. [Google Scholar] [CrossRef] [PubMed]
- Mellor, F.E.; Thomas, P.W.; Thompson, P.; Breen, A.C. Proportional lumbar spine inter-vertebral motion patterns: A comparison of patients with chronic, non-specific low back pain and healthy controls. Eur. Spine J. 2014, 23, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, I.; Salt, E.G.; Hooker, Q.; Van Dillen, L.R.; Bazrgari, B. Comparison of lumbo-pelvic kinematics during trunk forward bending and backward return between patients with acute low back pain and asymptomatic controls. Clin. Biomech. 2017, 41, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Colloca, C.J.; Hinrichs, R.N. The Biomechanical and Clinical Significance of the Lumbar Erector Spinae Flexion-Relaxation Phenomenon: A Review of Literature. J. Manip. Physiol. Ther. 2005, 28, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Hirata, R.P.; Salomoni, S.E.; Christensen, S.W.; Graven-Nielsen, T. Reorganised motor control strategies of trunk muscles due to acute low back pain. Hum. Mov. Sci. 2015, 41, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Cepková, A.; Muyor, J.M. The association of reactive balance control and spinal curvature under lumbar muscle fatigue. PeerJ 2021, 9, e11969. [Google Scholar] [CrossRef] [PubMed]
- Jandre Reis, F.J.; Macedo, A.R. Influence of Hamstring Tightness in Pelvic, Lumbar and Trunk Range of Motion in Low Back Pain and Asymptomatic Volunteers during Forward Bending. Asian Spine J. 2015, 9, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Arbanas, J.; Pavlovic, I.; Marijancic, V.; Vlahovic, H.; Starcevic-Klasan, G.; Peharec, S.; Bajek, S.; Miletic, D.; Malnar, D. MRI features of the psoas major muscle in patients with low back pain. Eur. Spine J. 2013, 22, 1965–1971. [Google Scholar] [CrossRef]
- Tateuchi, H.; Taniguchi, M.; Mori, N.; Ichihashi, N. Balance of hip and trunk muscle activity is associated with increased anterior pelvic tilt during prone hip extension. J. Electromyogr. Kinesiol. 2012, 22, 391–397. [Google Scholar] [CrossRef]
- Caneiro, J.P.; Smith, A.; Bunzli, S.; Linton, S.; Moseley, G.L.; O’Sullivan, P. From Fear to Safety: A Roadmap to Recovery from Musculoskeletal Pain. Phys. Ther. 2022, 102, 271. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.A.; Maher, C.G.; Franco, M.R.; Morelhão, P.K.; Oliveira, C.B.; Silva, F.G.; Pinto, R.Z. Fear of Movement Is Not Associated with Objective and Subjective Physical Activity Levels in Chronic Nonspecific Low Back Pain. Arch. Phys. Med. Rehabil. 2017, 98, 96–104. [Google Scholar] [CrossRef] [PubMed]
Pain, Mean (SD) | Average Differences | Student’s t Test | d | |||
---|---|---|---|---|---|---|
No | Yes | t (52) | p-Value | |||
Toe-ground clearance (cm) | 5.39 (8.89) | 4.22 (6.22) | 1.17 | 0.71 | 0.477 | 0.16 |
Schöber flexion (cm) | 14.84 (0.77) | 15.35 (0.93) | −0.51 | −2.57 | 0.012 | −0.58 |
Schöber extension (cm) | 7.58 (0.72) | 7.72 (0.90) | −0.14 | −0.73 | 0.469 | −0.16 |
Right side flexion (cm) | 48.55 (4.89) | 46.39 (4.08) | 2.16 | 2.19 | 0.031 | 0.49 |
Left side flexion (cm) | 49.44 (4.95) | 47.30 (4.20) | 2.14 | 2.12 | 0.037 | 0.48 |
Right rotation (degrees) | 44.36 (15.55) | 49.85 (14.60) | −5.49 | −1.64 | 0.106 | −0.37 |
Left rotation (degrees) | 44.71 (16.56) | 51.24 (14.10) | −6.53 | −1.93 | 0.056 | −0.43 |
Pain, Mean (SD) | Average Differences | Student’s t Test | d | |||
---|---|---|---|---|---|---|
No | Yes | t (52) | p-Value | |||
FAB_Total | 6.23 (8.22) | 16.82 (9.80) | −10.59 | −5.09 | <0.001 | −1.14 |
STarT_Back_Total | 0.61 (0.88) | 2.45 (1.55) | −1.84 | −6.08 | <0.001 | −1.37 |
GHQ_Total | 8.35 (3.79) | 9.25 (4.54) | −0.90 | −0.93 | 0.353 | −0.21 |
Flexion | Extension | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
PAIN (Yes vs. No) | 0.48 (0.23) | 0.26 | 2.08 | 0.041 | 0.27 (0.23) | 0.15 | 1.16 | 0.249 |
GHQ_Total | −0.05 (0.02) | −0.25 | −2.39 | 0.019 | 0.01 (0.02) | 0.04 | 0.31 | 0.755 |
FAB_Total | 0.03 (0.01) | 0.30 | 2.21 | 0.030 | 0.01 (0.01) | 0.14 | 0.97 | 0.336 |
STarT_Back_Total | −0.09 (0.08) | −0.16 | −1.10 | 0.276 | −0.17 (0.08) | −0.32 | −2.06 | 0.043 |
Right | Left | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
Pain (Yes vs. No) | −2.62 (1.22) | −0.28 | −2.14 | 0.035 | −2.22 (1.07) | −0.23 | −2.07 | 0.041 |
GHQ_Total | 0.01 (0.12) | 0.01 | 0.12 | 0.908 | 0.10 (0.12) | 0.10 | 0.85 | 0.399 |
FAB_Total | 0.03 (0.06) | 0.08 | 0.56 | 0.578 | 0.03 (0.06) | 0.07 | 0.48 | 0.634 |
STarT-Back_Total | −0.12 (0.43) | −0.04 | −0.27 | 0.787 | −0.26 (0.44) | −0.09 | −0.59 | 0.559 |
Right | Left | |||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p-Value | B (SE) | Beta | t | p-Value | |
Pain (Yes vs. No) | 7.85 (3.87) | 0.25 | 2.03 | 0.046 | 5.97 (4.24) | 0.19 | 1.41 | 0.163 |
GHQ_Total | 0.23 (0.40) | 0.07 | 0.58 | 0.562 | 0.03 (0.41) | 0.01 | 0.07 | 0.945 |
FAB_Total | −0.29 (0.21) | −0.20 | −1.39 | 0.168 | −0.21 (0.21) | −0.14 | −0.97 | 0.334 |
STarT-Back_Total | −0.05 (1.46) | −0.01 | −0.03 | 0.975 | 1.27 (1.48) | 0.13 | 0.86 | 0.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-de la Cruz, S. Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports 2024, 12, 190. https://doi.org/10.3390/sports12070190
Pérez-de la Cruz S. Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports. 2024; 12(7):190. https://doi.org/10.3390/sports12070190
Chicago/Turabian StylePérez-de la Cruz, Sagrario. 2024. "Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain" Sports 12, no. 7: 190. https://doi.org/10.3390/sports12070190
APA StylePérez-de la Cruz, S. (2024). Influence and Relationship of Pain on Lumbar Biomechanics in a Young Adult Population with Non-Specific Low Back Pain. Sports, 12(7), 190. https://doi.org/10.3390/sports12070190