Comparing the Anthropometrics, Body Composition, and Strength Performance of Male and Female Italian Breaking Athletes: A Pilot Study
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Design
2.2. Subjects
2.3. Anthropometric Measures
2.4. Body Composition
2.5. Strength Performance
2.6. Data Analysis
3. Results
3.1. Anthropometric Measures
3.2. Body Composition
3.3. Strength Performance
3.4. Associations among the Variables under Consideration: Correlations and Logistic Regression Analysis
4. Discussion
4.1. Practical Implications and Future Directions
4.2. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, D.; Okada, T. How Do Creative Experts Practice New Skills? Exploratory Practice in Breakdancers. Cogn. Sci. 2018, 42, 2364–2396. [Google Scholar] [CrossRef] [PubMed]
- FIDS. 2023. Available online: https://www.federdanza.it/ (accessed on 29 December 2023).
- Li, R.Z.; Vexler, Y.A. Breaking for Gold: Another Crossroads in the Divergent History of this Dance. Int. J. Hist. Sport 2019, 6, 430–448. [Google Scholar] [CrossRef]
- I.O.C. The Programme of the Games of the Olympiad 2021. Available online: https://olympics.com/ioc/documents/international-olympic-committee/olympic-programme (accessed on 9 October 2023).
- Ruscello, B.; Iannelli, S.; Partipilo, F.; Esposito, M.; Pantanella, L.; Dring, M.B.; D’Ottavio, S. Physical and physiological demands in women pole dance: A single case study. J. Sports Med. Phys. Fit. 2017, 57, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Morganti, G.; Lascu, A.; Apollaro, G.; Pantanella, L.; Esposito, M.; Grossi, A.; Ruscello, B. (Beyond) the field of play: Contrasting deterministic and probabilistic approaches to talent identification and development systems. Sport Educ. Soc. 2023, 1–14. [Google Scholar] [CrossRef]
- Morganti, G.; Brustio, P.R.; Ruscello, B.; Apollaro, G.; Padua, E.; Kelly, A.L. Birth Advantages in Male Italian Soccer: How They Influence Players Youth Career and Their Future Career Status. Sports 2024, 12, 103. [Google Scholar] [CrossRef]
- Güllich, J.; Cobley, S. On the efficacy of talent identification and talent development programmes. In Routledge Handbook of Talent Identification and Development in Sport; Baker, J., Cobley, S., Schorer, J., Wattie, N., Eds.; Routledge: London, UK, 2019; pp. 80–98. [Google Scholar]
- Weissensteiner, J.R. The global evolution of talent promotion within Olympic sports: A focus on the national systems and contribution of the former German Democratic Republic, Australia, and the United Kingdom. Front. Sports Act. Living 2023, 4, 1124234. [Google Scholar] [CrossRef] [PubMed]
- Montalbán-Méndez, C.; Giménez-Blasi, N.; García-Rodríguez, I.A.; Latorre, J.A.; Conde-Pipo, J.; López-Moro, A.; Mariscal-Arcas, M.; Gil-Antuñano, N.P. Body Composition and Nutritional Status of the Spanish National Breaking Team Aspiring to the Paris 2024 Olympic Games. Nutrients 2023, 15, 1218. [Google Scholar] [CrossRef] [PubMed]
- Prus, D.; Zaletel, P. Body Asymmetries in Dancers of Different Dance Disciplines. Int. J. Morphol. 2022, 40, 270–276. [Google Scholar] [CrossRef]
- Arundale, A.J.H.; McNulty, R.; Snyder, C.; O’Brien, J.; Stöggl, T. Injury, Training, Biomechanical, and Physiological Profiles of Professional Breakdancers. Int. J. Sports Phys. Ther. 2023, 18, 1123–1135. [Google Scholar] [CrossRef]
- Johnston, K.; Baker, J. Waste Reduction Strategies: Factors Affecting Talent Wastage and the Efficacy of Talent Selection in Sport. Front. Psychol. 2019, 10, 2925. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Cossio-Bolaños, M.A.; Hespanhol, J.E.; Portella, D.; Muniz da Silva, Y.; Pablos Abella, C.; Masi Alves, V.; Vargas, V.; Arruda, M. Assessment of the proportionality of skinfolds between professional football players and Peruvian reserves. Biomec. 2013, 21, 30–37. [Google Scholar] [CrossRef]
- Lago-Peñas, C.; Casais, L.; Dellal, A.; Rey, E.; Domìnguez, E. Anthropometric and physiological characteristics of young soccer players according to their playing positions: Relevance for competition success. J. Strength. Cond. Res. 2011, 25, 3358–3367. [Google Scholar] [CrossRef]
- Norton, K.; Olds, T. Morphological evolution of athletes over the 20th century: Causes and consequences. Sports Med. 2001, 31, 763–783. [Google Scholar] [CrossRef] [PubMed]
- Cardenas-Fernandez, V.; Chinchilla-Minguet, J.L.; Castillo-Rodriguez, A. Somatotype and Body Composition in Young Soccer Players According to the Playing Position and Sport Success. J. Strength. Cond. Res. 2019, 33, 1904–1911. [Google Scholar] [CrossRef]
- Malousaris, G.G.; Bergeles, N.K.; Barzouka, K.G.; Bayios, I.A.; Nassis, G.P.; Koskolou, M.D. Somatotype, size and body composition of competitive female volleyball players. J. Sci. Med. Sport. 2008, 11, 337–444. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.L. Physical Structure of Olympic Athletes. In Part II. Kinanthropometry of Olympic Athletes; Karger: Basel, Switzerland, 1984. [Google Scholar]
- Barba, B. Il corpo, il rito, il mito. In Un’antropologia Dello Sport; Piccola Biblioteca Einaudi: Turin, Italy, 2021. [Google Scholar]
- Claessens, A.L.; Lefevre, J.; Beunen, G.; Malina, R.M. The contribution of anthropometric characteristics to performance scores in elite female gymnasts. J. Sports Med. Phys. Fit. 1999, 39, 355–360. [Google Scholar]
- Ackland, T.; Elliott, B.; Richards, J. Growth in body size affects rotational performance in women’s gymnastics. Sports Biomech. 2003, 2, 163–176. [Google Scholar] [CrossRef]
- Lewandowska, J.; Busko, K.; Pastuszak, A.; Boguszewska, K. Somatotype variables related to muscle torque and power in judoists. J. Hum. Kinet. 2011, 30, 21–28. [Google Scholar] [CrossRef]
- Liiv, H.; Wyon, M.; Jürimäe, T.; Purge, P.; Saar, M.; Mäestu, J.; Jürimäe, J. Anthropometry and somatotypes of competitive DanceSport participants: A comparison of three different styles. Homo 2014, 65, 155–160. [Google Scholar] [CrossRef]
- Angioi, M.; Metsios, G.S.; Koutedakis, Y.; Wyon, M.A. Fitness in contemporary dance: A systematic review. Int. J. Sports Med. 2009, 30, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Twitchett, E.; Angioi, M.; Metsios, G.S.; Koutedakis, Y.; Wyon, M. Body Composition and Ballet Injuries: A Preliminary Study. Med. Probl. Perform. Artist. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Liiv, H.; Wyon, M.A.; Jürimäe, T.; Saar, M.; Mäestu, J.; Jürimäe, J. Anthropometry, Somatotypes, and Aerobic Power in Ballet, Contemporary Dance, and DanceSport. Med. Probl. Perform. Artist. 2013, 28, 207–211. [Google Scholar] [CrossRef]
- Bronner, S.; Ojofeitimi, S.; Woo, H. Extreme Kinematics in Selected Hip Hop Dance Sequences. Med. Probl. Perform. Art. 2015, 30, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Henn, E.D.; Lanza, S.; Ambegaonkar, J.P.; Smith, T.; Wyon, M. Spinal Counts, Impact, and Partnering Movements in Ballet, Modern, and Hip Hop dance: A YouTube Video Analysis Study. J. Danc. Med. Sci. 2023, 27, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Heyward, H.V.; Stolarczyk, M.L. Applied Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Jackson, S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 49, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. The gross composition of the body. In Advanced in Biological and Medical Physics; Lawrence, J., Tobias, C., Eds.; Academic Press: London, UK, 1956; pp. 239–280. [Google Scholar]
- Carter, J.E.L.; Heath, B.H. Somatotyping. In Development and Applications; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Wisloff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Chamari, K.; Hachana, Y.; Ahmed, Y.B.; Galy, O.; Sghaier, F.; Chatard, J.C.; Hue, O.; Wisløff, U. Field and laboratory testing in young elite soccer players. Br. J. Sports Med. 2004, 38, 191–196. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength. Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength. Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Marquina Nieto, M.; Rivilla-Garcia, J.; de la Rubia, A.; Lorenzo-Calvo, J. Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. Int. J. Env. Res. Public Health 2022, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Clemons, J. Construct Validity of Two Different Methods of Scoring and Performing Push-ups. J. Strength. Cond. Res. 2019, 33, 2971–2980. [Google Scholar] [CrossRef] [PubMed]
- Zalleg, D.; Ben Dhahbi, A.; Dhahbi, W.; Sellami, M.; Padulo, J.; Souaifi, M.; Bešlija, T.; Chamari, K. Explosive Push-ups: From Popular Simple Exercises to Valid Tests for Upper-Body Power. J. Strength. Cond. Res. 2020, 34, 2877–2885. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Ball, N. Validity and Reliability of Kinematics Measured with PUSH Band vs. Linear Encoder Bench Press. Push-Ups. Sports 2019, 7, 9. [Google Scholar] [CrossRef]
- van den Tillaar, R. Comparison of Kinematics and Muscle Activation between Push-up and Bench Press. Sports Med. Int. Open 2019, 3, 74–81. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Ball, N. Push-Ups are Able to Predict the Bench Press 1-RM and Constitute an Alternative for Measuring Maximum Upper Body Strength Based on Load-Velocity Relationships. J. Hum. Kinet. 2020, 73, 7–18. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 1990, 20, 337–340. [Google Scholar] [CrossRef]
- Winter, J. Using the Student’s “t”-Test with Extremely Small Sample Sizes. Pract. Assess. Res. Eval. 2013, 18, 10. [Google Scholar]
- Massidda, M.; Toselli, S.; Brasili, P.; Calo, C.M. Somatotype of elite Italian gymnasts. Coll. Antropol. 2013, 37, 853–857. [Google Scholar]
- Wyon, M.A.; Nevill, A.M.; Dekker, K.; Brown, D.D.; Clarke, F.; Pelly, J.; Koutedakis, Y. Effect of leg length on ROM, VJ and legdexterity in dance. Int. J. Sports Med. 2010, 31, 631–635. [Google Scholar] [CrossRef]
- Cindy, G.; Foley, B.A. From B-Girl to B-Baby: Constructing a Breakin’ Pedagogy. J. Danc. Educ. 2016, 16, 62–66. [Google Scholar] [CrossRef]
- Pérez-Portela, A.; Prieto-Lage, I.; Argibay-Gonzàlez, J.C.; Reguera-Lòpez-de-la-Osa, X.; Silva-Pinto, A.J.; Gutiérrez-Santiago, A. Time-motion analysis in men’s breaking: A longitudinal study. PLoS ONE 2023, 18, e0293131. [Google Scholar] [CrossRef]
- Atikovic, A. Anthropometric characteristics of olympic female and male artistic gymnasts from 1996 to 2016. Int. J. Morphol. 2020, 38, 990–996. [Google Scholar] [CrossRef]
- Malìř, R.; Chrudimský, J.; Šteffl, M.; Stastny, P. A Systematic Review of Dynamic, Kinematic, and Muscle Activity during Gymnastic Still Rings Elements. Sports 2023, 11, 50. [Google Scholar] [CrossRef]
- Starzak, M.; Biegajło, M.; Nogal, M.; Nìznikowski, T.; Ambròzy, T.; Rydzik, Ł.; Jaszczur-Nowicki, J. The Role of Verbal Feedback in the Motor Learning of Gymnastic Skills: A Systematic Review. Appl. Sci. 2022, 12, 5940. [Google Scholar] [CrossRef]
- Gutiérrez-Santiago, A.; Pérez-Portela, A.; Prieto-Lage, I. Analysis of the internal logic of breaking using temporal and sequential parameters. Int. J. Perform. Anal. Sport. 2021, 21, 90–107. [Google Scholar] [CrossRef]
- Wyon, M.A.; Harris, J.; Adams, F.; Cloak, R.; Clarke, F.A.; Bryant, J. Cardiorespiratory Profile and Performance Demands of Elite Hip-Hop Dancers: Breaking and New Style. Med. Probl. Perform. Art. 2018, 33, 198–204. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport. 2017, 20, 397–402. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Vaughan, J.; Rumbold, J.L.; Davids, K. Utilising the learning in development research framework in a professional youth football club. Front. Sports Act. Living 2023, 5, 1169531. [Google Scholar] [CrossRef] [PubMed]
- Ruscello, B.; Pantanella, L.; Iemme, P.; Filetti, C.; Porta, M.; D’Ottavio, S.; Marcelli, L.; Apollaro, G.; Morganti, G.; Grossi, A.; et al. Temporal patterns of fatigue in repeated sprint ability testing in soccer players and acute effects of different IHRs: A comparison between genders. J. Sports Med. Phys. Fit. 2023, 63, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Ruscello, B.; Briotti, G.; Tozzo, N.; Partipilo, F.; Taraborelli, M.; Zeppetella, A.; Padulo, J.; D’Ottavio, S. Acute effects of two different initial heart rates on testing the Repeated Sprint Ability in young soccer players. J. Sports Med. Phys. Fit. 2015, 55, 1082–1090. [Google Scholar] [PubMed]
Gender | Elite | Sub-Elite | |
---|---|---|---|
Male | 20.8% | 79.2% | 100.0% |
Female | 33.3% | 66.7% | 100.0% |
Total | 24.2% | 75.8% | 100.0% |
Variables | Female | Male | Welch’s t-Test |
---|---|---|---|
Height (m) | 1.585 (0.076) | 1.708 (0.057) | p = 0.001 *** d = 1.814 |
[1.526–1.644] | [1.684–1.732] | ||
(0.985; 0.985) | (0.970; 0.673) | ||
Weight (kg) | 54.17 (6.31) | 63.80 (6.58) | p = 0.002 *** d = 1.495 |
[49.31–59.14] | [61.02–66.58] | ||
(0.941; 0.593) | (0.954; 0.335) | ||
BMI (kg·m−2) | 21.55 (1.72) | 21.87 (2.17) | p = 0.663 d = 0.164 |
[20.22–22.88] | [20.95–22.79] | ||
(0.910; 0.317) | (0.946; 0.224) |
Variables | Female | Male | Welch’s t-Test |
---|---|---|---|
Subscapular (mm) | 10.24 (2.72) | 8.21 (1.22) | p = 0.058 d = −0.967 |
[8.15–12.33] | [7.70–8.72] | ||
(0.712; 0.002) | (0.935; 0.125) | ||
Triceps (mm) | 14.56 (2.65) | 6.29 (1.64) | p < 0.001 *** d = −3.752 |
[12.52–16.60] | [5.60–6.98] | ||
(0.981; 0.970) | (0.934; 0.123) | ||
Midaxillary (mm) | 9.33 (3,28) | 4.48 (0,82) | p = 0.003 *** d = −1.885 |
[6.81–11.85] | [4.48–5.17] | ||
(0.908; 0.303) | (0.908; 0.032) | ||
Chest (mm) | 5.84 (1.29) | 3.91 (0.69) | p = 0.002 *** d = −1.867 |
[4.84–6.84] | [3.62–4.20] | ||
(0.817; 0.031) | (0.924; 0.073) | ||
Suprailiac (mm) | 7.85 (2.48) | 4.72 (0.98) | p = 0.005 *** d = −1.663 |
[5.94–9.76] | [4.34–5.13] | ||
(0.932; 0.502) | (0.869; 0.005) | ||
Abdominal (mm) | 12.90 (3.02) | 7.32 (1.86) | p < 0.001 *** d = −2.223 |
[10.57–15.22] | [6.53–8.10] | ||
(0.919; 0.383) | (0.947; 0.236) | ||
Thigh (mm) | 23.27 (4.26) | 9.14 (3.24) | p < 0.001 *** d = −3.733 |
[19.99–26.55] | [7.77–10.51] | ||
(0.976; 0.943) | (0.894; 0.016) | ||
Calf (mm) | 16.20 (4.12) | 7.47 (2.40) | p < 0.001 *** d = −2.586 |
[13.02–19.37] | [6.46–8.48] | ||
(0.920; 0.390) | (0.960; 0.438) | ||
Sum of 8 skinfolds (mm) | 100.24 (17.06) | 51.92 (10.63) | p < 0.001 *** d = −3.400 |
[87,13–113.36] | [47.43–56.41] | ||
(0.988; 0.993) | (0.963; 0.510) | ||
Bicep girths (cm) | 26.50 (1.50) | 29.66 (2.06) | p < 0.001 *** d = 1.759 |
[25.35–27.65] | [28.80–30.53] | ||
(0.948; 0.674) | (0.970; 0.662) | ||
Thigh girths (cm) | 51.61 (2.82) | 49.33 (4.55) | p = 0.098 d = −0.601 |
[49.44–53.78] | [47.41–51.25] | ||
(0.930; 0.479) | (0.916; 0.048) | ||
Calf girths (cm) | 35.16 (1.66) | 35.81 (3.82) | p = 0.505 d = 0.219 |
[33.89–36.44] | [34.20–37.43] | ||
(0.951; 0.696) | (0.725; 0.001) | ||
Humerus breadths (cm) | 5.85 (0.33) | 6.86 (0.36) | p < 0.001 *** d = 2.886 |
[5.60–6.11] | [6.70–7.02] | ||
(0.968; 0.880) | (0.943; 0.190) | ||
Femur breadths (cm) | 9.13 (0.41) | 9.71 (0.41) | p = 0.003 *** d = 1.412 |
[8.82–9.45] | [9.53–9.88] | ||
(0.894; 0.217) | (0.964; 0.534) |
Variables | Female | Male | Welch’s t-Test |
---|---|---|---|
Body Fat-Free Mass (kg) | 44.66 (5.28) | 57.15 (5.15) | p < 0.001 *** d = 2.39 |
[40.61–48.72] | [54.97–59.32] | ||
(0.983; 0.977) | (0.967; 0.600) | ||
Body Fat (%) | 17.54 (2.28) | 10.28 (1.85) | p < 0.001 *** d = −3.49 |
[15.79–19.30] | [9.50–11.06] | ||
(0.969; 0.883) | (0.957; 0.387) | ||
Body Fat Mass (kg) | 9.50 (1.74) | 6.65 (1.73) | p < 0.001 *** d = −1.64 |
[8.16–10.84] | [5.92–7.38] | ||
(0.967; 0.866) | (0.950; 0.276) |
Variables | Female | Male | Welch’s t-Test |
---|---|---|---|
Endomorphic | 2.34 (1.07) | 2.28 (0.90) | p = 0.886 d = −0.06 |
[1.52–3.17] | [1.90–2.66] | ||
(0.811; 0.027) | (0.854; 0.003) | ||
Mesomorphic | 5.16 (1.00) | 4.64 (1.39) | p = 0.241 d = −0.44 |
[4.39–5.94] | [4.05–5.22] | ||
(0.826; 0.040) | (0.959; 0.411) | ||
Ectomorphic | 2.38 (0.92) | 2.69 (1.28) | p = 0.451 d = 0.28 |
[1.67–3.08] | [2.15–3.23] | ||
(0.916; 0.359) | (0.974; 0.770) |
Variables | Female | Male |
---|---|---|
CMJ5—peak height (m) | 0.279 (0.048) | 0.401 (0.048) |
[0.238–0.319] | [0.381–0.421] | |
17.3% | 11.9% | |
(0.856; 0.111) | (0.950; 0.264) | |
CMJ5—mean height (m) | 0.258 (0.051) | 0.367 (0.048) |
[0.215–0.301] | [0.346–0.387] | |
19.6% | 13.2% | |
(0.833; 0.064) | (0.941; 0.168) | |
CMJ5—best contact time (s) | 0.349 (0.051) | 0.406 (0.076) |
[0.306–0.391] | [0.373–0.438] | |
14.6% | 20.37% | |
(0.973; 0.922) | (0.975; 0.780) | |
CMJ5—mean contact time (s) | 0.411 (0.047) | 0.475 (0.059) |
[0.372–0.450] | [0.449–0.500] | |
11.4% | 12.4% | |
(0.986; 0.987) | (0.973; 0.752) | |
CMJ5—peak power (w·kg−1) | 26.07 (4.32) | 32.18 (5.82) |
[22.45–29.84] | [29.72–34.64] | |
16.6% | 18.08% | |
(0.975; 0.932) | (0.943; 0.193) | |
CMJ5—mean power (w·kg−1) | 23.80 (3.88) | 28.80 (4.21) |
[20.55–27.05] | [29.01–30.58] | |
16.3% | 14.61% | |
(0.932; 0.533) | (0.943; 0.192) | |
Push-up—power (w·kg−1) | 4.09 (1.09) | 7.47 (1.55) |
[3.18–5.01] | [6.78–8.16] | |
26.6% | 20.7% | |
(0.947; 0.681) | (0.980; 0.909) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruscello, B.; Morganti, G.; De Fano, A.; Mancina, F.; Lunetta, L.; Di Mauro, G.; Cogoni, C.; Pagano, E.; Brigati, N.M.; Di Castro, A.; et al. Comparing the Anthropometrics, Body Composition, and Strength Performance of Male and Female Italian Breaking Athletes: A Pilot Study. Sports 2024, 12, 197. https://doi.org/10.3390/sports12070197
Ruscello B, Morganti G, De Fano A, Mancina F, Lunetta L, Di Mauro G, Cogoni C, Pagano E, Brigati NM, Di Castro A, et al. Comparing the Anthropometrics, Body Composition, and Strength Performance of Male and Female Italian Breaking Athletes: A Pilot Study. Sports. 2024; 12(7):197. https://doi.org/10.3390/sports12070197
Chicago/Turabian StyleRuscello, Bruno, Gabriele Morganti, Antonio De Fano, Flavio Mancina, Laura Lunetta, Giuseppe Di Mauro, Claudio Cogoni, Edilio Pagano, Nicolò Marco Brigati, Andrea Di Castro, and et al. 2024. "Comparing the Anthropometrics, Body Composition, and Strength Performance of Male and Female Italian Breaking Athletes: A Pilot Study" Sports 12, no. 7: 197. https://doi.org/10.3390/sports12070197
APA StyleRuscello, B., Morganti, G., De Fano, A., Mancina, F., Lunetta, L., Di Mauro, G., Cogoni, C., Pagano, E., Brigati, N. M., Di Castro, A., Gianfelici, A., Spada, R., Padua, E., & Ragona, C. (2024). Comparing the Anthropometrics, Body Composition, and Strength Performance of Male and Female Italian Breaking Athletes: A Pilot Study. Sports, 12(7), 197. https://doi.org/10.3390/sports12070197