Neck Cooling Improves Table Tennis Performance amongst Young National Level Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Procedures
2.3.1. Incremental Exercise Test to Exhaustion
2.3.2. Testing Procedure for Experimental Trials
2.3.3. Table Tennis Specific Protocol
2.4. Statistical Analyses
3. Results
3.1. Performance
3.2. Physiological Variables
3.3. Psychological Variables
3.4. Correlations
4. Discussion
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Kondrič, M.; Zagatto, A.M.; Sekulić, D. The physiological demands of table tennis: A review. J. Sports Sci. Med. 2013, 12, 362–370. [Google Scholar] [PubMed]
- Bergeron, M.F.; Laird, M.D.; Marinik, E.L.; Brenner, J.S.; Waller, J.L. Repeated-bout exercise in the heat in young athletes: Physiological strain and perceptual responses. J. Appl. Physiol. 2009, 106, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Takeuchi, T.; Hosoi, T.; Takaba, S. Dehydration during table tennis in a hot, humid environment. In Science and Racket Sports III; Lees, A., Kahn, J.-F., Maynard, I.W., Eds.; Routledge: Abingdon, UK, 2004; pp. 16–23. [Google Scholar]
- Wegmann, M.; Faude, O.; Poppendieck, W.; Hecksteden, A.; Fröhlich, M.; Meyer, T. Pre-cooling and sports performance: A meta-analytical review. Sports Med. 2012, 42, 545–564. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007, 37, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alonso, J. Hyperthermia impairs brain, heart and muscle function in exercising humans. Sports Med. 2007, 37, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alonso, J.; Teller, C.; Andersen, S.L.; Jensen, F.B.; Hyldig, T.; Nielsen, B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 1999, 86, 1032–1039. [Google Scholar] [PubMed]
- Marino, F.E. Methods, advantages, and limitations of body cooling for exercise performance. Br. J. Sports Med. 2002, 36, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med. 2009, 43, e1. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, C.; Nevill, M.E. High-intensity intermittent running and field hockey skill performance in the heat. J. Sports Sci. 2005, 23, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, G.F.; Demartini, J.K.; Casa, D.J.; McDermott, B.P.; Armstrong, L.E.; Maresh, C.M. Effect of body cooling on subsequent aerobic and anaerobic exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 3488–3496. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Sunderland, C.; Cheung, S.S. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: A meta-analysis. Br. J. Sports Med. 2015, 49, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Dawson, B.; Bishop, D.; Fitzsimons, M.; Lawrence, S. Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. Br. J. Sports Med. 2003, 37, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Armada-da-Silva, P.A.; Woods, J.; Jones, D.A. The effect of passive heating and face cooling on perceived exertion during exercise in the heat. Eur. J. Appl. Physiol. 2004, 91, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Sunderland, C. Cooling the neck region during exercise in the heat. J. Athl. Train. 2011, 46, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Sunderland, C. Neck cooling and running performance in the heat: Single versus repeated application. Med. Sci. Sports Exerc. 2011, 43, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Galpin, A.; Bagley, J.R.; Whitcomb, B.; Wiersma, L.D.; Rosengarten, J.; Coburn, J.W.; Judelson, D.A. Effects of intermittent neck cooling during repeated bouts of high-intensity exercise. Sports 2016, 4, 38. [Google Scholar] [CrossRef]
- Kanlayanaphotporn, R.; Janwantanakul, P. Comparison of skin surface temperature during the application of various cryotherapy modalities. Arch. Phys. Med. Rehabil. 2005, 86, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- McNeely, E. Practical aspects of precooling for competition in the heat. Strength Cond. J. 2015, 37, 69–73. [Google Scholar] [CrossRef]
- Cheung, S.S. Neuromuscular response to exercise heat stress. In Thermoregulation and Human Performance Physiological and Biological Aspects; Marino, F.E., Ed.; Karger: Basel, Switzerland, 2008; pp. 39–60. [Google Scholar]
- Duffield, R.; Green, R.; Castle, P.; Maxwell, N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med. Sci. Sports Exerc. 2010, 42, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Sawka, M.N.; Epstein, Y.; Decristofano, B.; Pandolf, K.B. Cooling different body surfaces during upper and lower body exercise. J. Appl. Physiol. 1987, 63, 1218–1223. [Google Scholar] [PubMed]
- Marsh, D.; Sleivert, G. Effect of precooling on high intensity cycling performance. Br. J. Sports Med. 1999, 33, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [PubMed]
- Stroop, J. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Reilly, T.; Drust, B.; Gregson, W. Thermoregulation in elite athletes. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, A.; Morel, E.A.; Gobatto, C.A. Physiological responses and characteristics of table tennis matches determined in official tournaments. J. Strength Cond. Res. 2010, 24, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, A.; Miranda, M.F.; Gobatto, C.A. Critical power concept adapted for the specific table tennis test: Comparisons between exhaustion criteria, mathematical modeling, and correlation with gas exchange parameters. Int. J. Sports Med. 2011, 32, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Suchomel, A. A comparison of exercise intensity on different player levels in table tennis. Int. J. Table Tennis Sci. 2010, 6, 79–82. [Google Scholar]
- Davey, P.R.; Thorpe, R.D.; Williams, C. Fatigue decreases skilled tennis performance. J. Sports Sci. 2002, 20, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Millet, G.P. Neuromuscular fatigue in racquet sports. Phys. Med. Rehabil. Clin. N. Am. 2009, 20, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Hornery, D.J.; Farrow, D.; Mujika, I.; Young, W.B. Caffeine, carbohydrate, and cooling use during prolonged simulated tennis. Int. J. Sports Physiol. Perform. 2007, 2, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Knicker, A.J.; Renshaw, I.; Oldham, A.R.; Cairns, S.P. Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med. 2011, 41, 307–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.S.; Robergs, R.A.; Schneider, S.M. Effect of local cooling on short-term, intense exercise. J. Strength Cond. Res. 2013, 27, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Hales, J.R.; Strange, S.; Christensen, N.J.; Warberg, J.; Saltin, B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J. Physiol. 1993, 460, 467–485. [Google Scholar] [CrossRef] [PubMed]
- Kozyreva, T.V. Adaptation to cold of homeothermic organism: Changes in afferent and efferent links of the thermoregulatory system. J. Exp. Integr. Med. 2013, 3, 255–265. [Google Scholar] [CrossRef]
Pre-Test | Baseline | After Warm-Up | Before Bout 1 | After Bout 1 | Before Bout 2 | After Bout 2 | Before Bout 3 | After Bout 3 | 5 min Post-Exercise | Post-Test | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR (bpm) | CON | 91.50 ± 17.53 | 132.75 ± 23.70 | 98.88 ± 23.37 | 171.25 ± 14.85 | 109.38 ± 20.93 | 139 ± 21.17 | 105.5 ± 16.12 | 162.63 ± 25.13 | 102.25 ± 16.46 | ||
ICE | 84.25 ± 7.70 | 132.5 ± 23.53 | 96.13 ± 12.17 | 172.75 ± 16.88 | 108.13 ± 8.46 | 151.38 ± 20.69 | 106.63 ± 12.16 | 167.63 ± 22.47 | 101.63 ± 7.15 | |||
VO2 (L·min−1) | CON | 2.54 ± 0.41 | 1.78 ± 0.42 | 2.35 ± 0.49 | ||||||||
ICE | 2.58 ± 0.25 | 1.81 ± 0.34 | 2.29 ± 0.45 | |||||||||
TS (AU) | CON | 4.38 ± 0.74 | 5.25 ± 1.04 * | 5 ± 1.2 * | 6.13 ± 0.64 | 5.25 ± 1.04 | 5.75 ± 1.16 | 5.13 ± 1.36 * | 6.25 ± 0.89 ^ | 4.88 ± 1.13 | ||
ICE | 4.13 ± 0.83 | 4.63 ± 1.06 | 3.5 ± 1.51 | 5.75 ± 0.46 | 4.5 ± 1.6 | 5.38 ± 0.92 | 4.5 ± 1.31 | 5.38 ± 0.92 | 4.5 ± 0.76 | |||
RPE (AU) | CON | 16.13 ± 1.46 | 12.5 ± 2.78 | 14.5 ± 1.85 | ||||||||
ICE | 15.25 ± 1.49 | 13.25 ± 2.31 | 14.25 ± 1.49 | |||||||||
Stroop Accuracy (AU) | CON | 37.75 ± 1.67 | 37.63 ± 1.6 | |||||||||
ICE | 38.16 ± 1.81 | 37.63 ± 1.92 | ||||||||||
Stroop Reaction Time (ms) | CON | 646.99 ± 106.54 | 578.66 ± 104.2 | |||||||||
ICE | 617.38 ± 142.33 | 545.77 ± 137.92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, T.; Bottoms, L. Neck Cooling Improves Table Tennis Performance amongst Young National Level Players. Sports 2017, 5, 19. https://doi.org/10.3390/sports5010019
Desai T, Bottoms L. Neck Cooling Improves Table Tennis Performance amongst Young National Level Players. Sports. 2017; 5(1):19. https://doi.org/10.3390/sports5010019
Chicago/Turabian StyleDesai, Terun, and Lindsay Bottoms. 2017. "Neck Cooling Improves Table Tennis Performance amongst Young National Level Players" Sports 5, no. 1: 19. https://doi.org/10.3390/sports5010019
APA StyleDesai, T., & Bottoms, L. (2017). Neck Cooling Improves Table Tennis Performance amongst Young National Level Players. Sports, 5(1), 19. https://doi.org/10.3390/sports5010019