Exercise, Osteoporosis, and Bone Geometry
Abstract
:1. General Introduction
2. Methods
3. The Role of Physical Activity and Exercise on Bone Geometry across the Lifespan: Cross-Sectional Observations
4. Exercise Intervention Trials and Bone Geometry during Childhood and Adolescence
4.1. Girls
4.2. Combined Girls and Boys
5. Exercise Intervention Trials and Bone Geometry in Young and Middle-Aged Adults
5.1. Premenopausal Women
5.2. Young Adult Men
5.3. Combined Premenopausal Women and Young Adult Men
6. Exercise Intervention Trials and Bone Geometry in Older Adults
6.1. Older Men
6.1.1. Weight-Bearing Aerobic Exercise
6.1.2. Impact Loading
6.1.3. Resistance Training
6.1.4. Combined Aerobic, Resistance, and Impact Training
6.2. Postmenopausal Women
6.2.1. Weight-Bearing Aerobic Exercise
6.2.2. Impact Loading
6.2.3. Resistance Training
6.2.4. Combined Aerobic, Resistance, and Impact Training
7. Summary
8. Future Research
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bouillon, R.; Burckhardt, P.; Christiansen, C.; Fleisch, H.A.; Fujita, T.; Gennari, C.; Marin, T.J.; Mazzuoli, G.; Melton, L.J.; Ringe, J.D. Consensus development conference: Prophylaxis and treatment of osteoporosis. Am. J. Med. 1991, 90, 107–110. [Google Scholar]
- Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone 2006, 38, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone. Miner Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.J.; Pasco, J.A.; Nicholson, G.C.; Kotowicz, M.A. Prevalence of osteoporosis in Australian men and women: Geelong Osteoporosis Study. Med. J. Aust. 2011, 195, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Svedbom, A.; Ivergard, M.; Hernlund, E.; Rizzoli, R.; Kanis, J.A. Epidemiology and economic burden of osteoporosis in Switzerland. Arch. Osteoporos. 2014, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergard, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jonsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Oden, A.; McCloskey, E.V.; Kanis, J.A.; Harvey, N.C.; Johansson, H. Burden of high fracture probability worldwide: Secular increases 2010–2040. Osteoporos. Int. 2015, 26, 2243–2248. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Melton, L.J., III. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J. Epidemiology of osteoporotic fractures. Osteoporos. Int. 2005, 16, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., III; Chriscilles, E.A.; Cooper, C.; Lane, W.A.; Riggs, B.L. Perspective: How many women have osteoporosis? J. Bone Miner. Res. 1992, 7, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johnell, O.; Oden, A.; Sernbo, I.; Redlund-Johnell, I.; Dawson, A.; De Laet, C.; Jonsson, B. Long-term risk of osteoporotic fracture in Malmö. Osteoporos. Int. 2000, 11, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Hiligsmann, M.; Bruyère, O.; Ethgen, O.; Gathon, H.J.; Reginster, J.Y. Lifetime absolute risk of hip and other osteoporotic fracture in Belgian women. Bone 2008, 43, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Doherty, D.A.; Sanders, K.M.; Kotowicz, M.A.; Prince, R.L. Lifetime and five-year age-specific risk of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporos. Int. 2001, 12, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Mosley, J.R.; March, B.M.; Lynch, J.; Lanyon, L.E. Strain magnitude related changes in whole bone architecture in growing rats. Bone 1997, 20, 191–198. [Google Scholar] [CrossRef]
- Hsieh, Y.-F.; Robling, A.G.; Ambrosius, W.T.; Burr, D.B.; Turner, C.H. Mechanical loading of diaphyseal bone in vivo: The strain threshold for an osteogenic response varies with location. J. Bone Miner. Res. 2001, 16, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.A.; Lanyon, L.E.; MacFie, H. The influence of strain rate on adaptive bone remodelling. J. Biomech. 1982, 15, 767–781. [Google Scholar] [CrossRef]
- Rubin, C.T.; McLeod, K.J. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin. Orthop. Relat. Res. 1994, 298, 165–174. [Google Scholar] [CrossRef]
- Hsieh, Y.F.; Turner, C.H. Effects of loading frequency on mechanically induced bone formation. J. Bone Miner. Res. 2001, 16, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.T.; Turner, A.S.; Mallinckrodt, C.; Jerome, C.; McLeod, K.J.; Bain, S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 2002, 30, 445–452. [Google Scholar] [CrossRef]
- Rubin, C.T.; Lanyon, L.E. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 1984, 66, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Lanyon, L.E.; Rubin, C.T. Static vs. dynamic loads as an influence on bone remodelling. J. Biomech. 1984, 17, 897–905. [Google Scholar] [CrossRef]
- Kelley, G.A.; Kelley, K.S.; Khort, W.M. Exercise and bone mineral density in men: A meta-analysis of randomized controlled trials. Bone 2013, 53, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Bolam, K.A.; Van Uffelen, J.G.Z.; Taaffe, D.R. The effect of physical exercise on bone density in middle-aged and older men: A systematic review. Osteoporos. Int. 2013, 24, 2749–2762. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S.; Tran, Z.V. Exercise and bone mineral density in men: A meta-analysis. J. Appl. Physiol. 2000, 88, 1730–1736. [Google Scholar] [PubMed]
- Howe, T.E.; Shea, B.; Dawson, L.J.; Downie, F.; Murray, A.; Ross, C.; Harbour, R.T.; Caldwell, L.M.; Creed, G. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, M.; Xu, Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: A meta-analysis. Osteoporos. Int. 2015, 26, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Martyn-St James, M.; Carroll, C. A meta-analysis of impact exercise on postmenopausal bone loss: The case for mixed loading exercise programmes. Br. J. Sports Med. 2008, 43, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.A.; Cumming, R.G. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif. Tissue Int. 2000, 67, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Zehnacker, C.H.; Bemis-Dougherty, A. Effect of weighted exercises on bone mineral density in post menopausal women. A systematic review. J. Geriatr. Phys. Ther. 2007, 30, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Martyn-St James, M.; Carroll, S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporos. Int. 2006, 17, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, L.M.; Papaioannou, A.; Macintyre, N.J.; Ashe, M.C.; Heinonen, A.; Shipp, K.; Wark, J.D.; McGill, S.; Keller, H.; Jain, R.; et al. Too Fit To Fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos. Int. 2014, 25, 821–835. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.R.; Daly, R.M.; Singh, M.A.; Taaffe, D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport 2016, 20, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.H.; Jameson, K.; Denison, H.; Harvey, N.C.; Sayer, A.A.; Dennison, E.M.; Cooper, C. Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 2013, 52, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Seeman, E.; Henry, M.J.; Merriman, E.N.; Nicholson, G.C.; Kotowicz, M.A. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 2006, 17, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002, 359, 1929–1936. [Google Scholar] [CrossRef]
- Guglielmi, G.; Muscarella, S.; Bazzocchi, A. Integrated imaging approach to osteoporosis: State-of-the-art review and update. Radiographics 2011, 31, 1343–1364. [Google Scholar] [CrossRef] [PubMed]
- Bono, C.M.; Einhorn, T.A. Overview of osteoporosis: Pathophysiology and determinants of bone strength. Eur. Spine J. 2003, 12, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.P.S.; Macdonald, H.M.; Kim, S.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef] [PubMed]
- Ducher, G.; Daly, R.M.; Bass, S.L. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. J. Bone Miner. Res. 2009, 24, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Bass, S.L.; Saxon, L.; Daly, R.M.; Turner, C.H.; Robling, A.G.; Seeman, E.; Stuckey, S. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: A study in tennis players. J. Bone Miner. Res. 2002, 17, 2274–2280. [Google Scholar] [CrossRef] [PubMed]
- Weatherholt, A.M.; Warden, S.J. Tibial bone strength is enhanced in the jump leg of collegiate-level jumping athletes: A within-subject controlled cross-sectional study. Calcif. Tissue Int. 2016, 98, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.J.; Le Rossignol, P. Anthropometric and biomechanical field measures of floor and vault ability in 8 to 14 year old talent-selected gymnasts. Sports Biomech. 2004, 3, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Dowthwaite, J.N.; Scerpella, T.A. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics. Osteoporos. Int. 2011, 22, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, T.; Duckham, R.L.; Suominen, H.; Heinonen, A.; Alen, M.; Korhonen, M.T. Tibial and fibular mid-shaft bone traits in young and older sprinters and non-athletic men. Calcif. Tissue Int. 2014, 95, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Nikander, R.; Sievänen, H.; Uusi-Rasi, K.; Heinonen, A.; Kannus, P. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: A pQCT study of adult female athletes. Bone 2006, 39, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Oura, P.; Paananen, M.; Niinimaki, J.; Tammelin, T.; Herrala, S.; Auvinen, J.; Korpelainen, R.; Junno, J.A.; Karppinen, J. Effects of leisure-time physical activity on vertebral dimensions in the Northern Finland Birth Cohort 1966. Sci. Rep. 2016, 6, 27844. [Google Scholar] [CrossRef] [PubMed]
- Kemper, H.C.; Bakker, I.; Twisk, J.W.; van Mechelen, W. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass. Bone 2002, 30, 799–804. [Google Scholar] [CrossRef]
- Turner, C.H.; Robling, A.G. Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 2003, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.K.; Beck, B.R. The BPAQ: A bone-specific physical activity assessment instrument. Osteoporos. Int. 2008, 19, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.H.; Williams, D.P.; Ainsworth, B.E.; Shaw, J.M. Development and reproducibility of the bone loading history questionnaire. Med. Sci. Sports Exerc. 2006, 38, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Bass, S.L. Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos. Int. 2006, 17, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Ruff, C.B.; Warden, S.J.; Scott, W.W.; Rao, G.U. Predicting femoral neck strength from bone mineral data: A structural approach. Invest Radiol 1990, 25, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.C.; Weeks, B.K.; Beck, B.R. An in-school exercise intervention to enhance bone and reduce fat in girls: The CAPO Kids trial. Bone 2014, 68, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.C.; Weeks, B.K.; Beck, B.R. Targeting bone and fat with novel exercise for peripubertal boys: The CAPO kids trial. Pediatr. Exerc. Sci. 2015, 27, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, A.; Sievänen, H.; Kannus, P.; Oja, P.; Pasanen, M.; Vuori, I. High-impact exercise and bones of growing girls: A 9-month controlled trial. Osteoporos. Int. 2000, 11, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Kontulainen, S.A.; Khan, K.M.; McKay, H.A. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J. Bone Miner. Res. 2007, 22, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Cooper, D.M.; McKay, H.A. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: Evidence for non-uniform geometric adaptation. Osteoporos. Int. 2009, 20, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, N.; Binkley, T.; Englert, V.; Neiderauer, G.; Specker, B. Bone response to jumping is site-specific in children: A randomized trial. Bone 2003, 33, 533–539. [Google Scholar] [CrossRef]
- Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Vainionpää, A.; Korpelainen, R.; Sievänen, H.; Vihriälä, E.; Leppäluoto, J.; Jämsä, T. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 2007, 40, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Winters-Stone, K.; Snow, C.M. Initial values predict musculoskeletal reponse to exercise in premenopausal women. Med. Sci. Sports Exerc. 2003, 35, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Izard, R.M.; Fraser, W.D.; Negus, C.; Sale, C.; Greeves, J.P. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training. Bone 2016, 88, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, K.I.; Rawal, J.S.; Kehoe, A.; James, L.E.; Payne, J.R.; Skipworth, J.R.; Puthucheary, Z.A.; Drenos, F.; Pennell, D.J.; Loosemore, M.; et al. The Lichfield bone study: The skeletal response to exercise in healthy young men. J. Appl. Physiol. 2012, 112, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.F.; Saeed, I.H.; Streeper, T.; Carballido-Gamio, J.; Harnish, R.J.; Frassetto, L.A.; Lee, S.M.; Sibonga, J.D.; Keyak, J.H.; Spiering, B.A.; et al. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J. Bone Miner. Res. 2014, 29, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Wagner, J.; Wasnich, R.; Heilbrun, L. The effect of long-distance running upon appendicular bone mineral content. Med. Sci. Sports Exerc. 1984, 16, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Michel, B.A.; Lane, N.E.; Björkengren, A.; Bloch, D.A.; Fries, J.F. Impact of running on lumbar bone density: A 5-year longitudinal study. J. Rheumatol. 1992, 19, 1759–1763. [Google Scholar] [PubMed]
- Huuskonen, J.; Väisänen, S.B.; Kröger, H.; Jurvelin, J.S.; Alhava, E.; Rauramaa, R. Regular physical exercise and bone mineral density: A four-year controlled randomized trial in middle-aged men. The DNASCO study. Osteoporos. Int. 2001, 12, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Lafont, C.; Costes-Salon, M.C.; Riviere, D.; Dupui, P. Effects of brisk walking on static and dynamic balance, locomotion, body composition, and aerobic capacity in ageing healthy active men. Int. J. Sports Med. 2004, 25, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.J.; Poole, K.E.; Treece, G.M.; Gee, A.H.; Tonkin, C.; Rennie, W.J.; Brooke-Wavell, K. The influence of high impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: A randomised controlled unilateral intervention. J. Bone Miner. Res. 2015, 30, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. ‘American College of Sports Medicine’ position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Kukuljan, S.; Nowson, C.A.; Sanders, K.M.; Nicholson, G.C.; Seibel, M.J.; Salmon, J.; Daly, R.M. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: An 18-month factorial design randomized controlled trial. J. Clin. Endocrinol. Metab. 2011, 96, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Nikander, R.; Sievanen, H.; Heinonen, A.; Daly, R.M.; Uusi-Rasi, K.; Kannus, P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.J.; Swan, V.J.; Jamal, S.A. The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: A systematic review of pQCT studies. Osteoporos. Int. 2010, 21, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Polidoulis, I.; Beyene, J.; Cheung, A.M. The effect of exercise on pQCT parameters of bone structure and strength in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Osteoporos. Int. 2012, 23, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Palombaro, K.M. Effects of walking-only interventions on bone mineral density at various skeletal sites: A meta-analysis. J. Geriatr. Phys. Ther. 2005, 28, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Uusi-Rasi, K.; Kannus, P.; Cheng, S.; Sievanen, H.; Pasanen, M.; Heinonen, A.; Nenonen, A.; Halleen, J.; Fuerst, T.; Genant, H.; et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: A randomized controlled trial. Bone 2003, 33, 132–143. [Google Scholar] [CrossRef]
- Adami, S.; Gatti, D.; Braga, V.; Bianchini, D.; Rossini, M. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. J. Bone. Miner. Res. 1999, 14, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Sipilä, S.; Taaffe, D.R.; Puolakka, J.; Suominen, H. Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone 2002, 31, 126–135. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.Y.; Khan, K.M.; Eng, J.J.; Heinonen, A.; McKay, H.A. Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: A 6-month randomized controlled trial. J. Clin. Densitom. 2004, 7, 390–398. [Google Scholar] [CrossRef]
- Karinkanta, S.; Heinonen, A.; Sievanen, H.; Uusi-Rasi, K.; Pasanen, M.; Ojala, K.; Fogelholm, M.; Kannus, P. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: Randomized, controlled trial. Osteoporos. Int. 2007, 18, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Karinkanta, S.; Heinonen, A.; Sievanen, H.; Uusi-Rasi, K.; Fogelholm, M.; Kannus, P. Maintenance of exercise-induced benefits in physical functioning and bone among elderly women. Osteoporos. Int. 2009, 20, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harding, A.T.; Beck, B.R. Exercise, Osteoporosis, and Bone Geometry. Sports 2017, 5, 29. https://doi.org/10.3390/sports5020029
Harding AT, Beck BR. Exercise, Osteoporosis, and Bone Geometry. Sports. 2017; 5(2):29. https://doi.org/10.3390/sports5020029
Chicago/Turabian StyleHarding, Amy T., and Belinda R. Beck. 2017. "Exercise, Osteoporosis, and Bone Geometry" Sports 5, no. 2: 29. https://doi.org/10.3390/sports5020029
APA StyleHarding, A. T., & Beck, B. R. (2017). Exercise, Osteoporosis, and Bone Geometry. Sports, 5(2), 29. https://doi.org/10.3390/sports5020029