Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Approach
2.3. Methodology
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mann, J.B.; Ivey, P.A.; Sayers, S.P. Velocity-Based Training in Football. Strength Cond. J. 2015, 37, 52–57. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Pareja-Blanco, F.; Rodriguez-Rosell, D.; Abad-Herencia, J.L.; Del Ojo-Lopez, J.J.; Sanchez-Medina, L. Effects of velocity-based resistance training on young soccer players of different ages. J. Strength Cond. Res. 2015, 29, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ramos, A.; Stirn, I.; Padial, P.; Arguelles-Cienfuegos, J.; De la Fuente, B.; Strojnik, V.; Feriche, B. Predicting vertical jump height from bar velocity. J. Sports Sci. Med. 2015, 14, 256–262. [Google Scholar] [PubMed]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Cronin, J.; Storey, A.; Zourdos, M.C. Application of the Repetitions in Reserve-Based Rating of Perceived Exertion Scale for Resistance Training. Strength Cond. J. 2016, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; Flanagan, E.P. Researched applications of velocity based strength training. J. Aust. Strength Cond. 2014, 22, 58–69. [Google Scholar]
- Ramírez, J.M.; Núñez, V.M.; Lancho, C.; Poblador, M.S.; Lancho, J.L. Velocity-Based Training of Lower Limb to Improve Absolute and Relative Power Outputs in Concentric Phase of Half-Squat in Soccer Players. J. Strength Cond. Res. 2015, 29, 3084–3088. [Google Scholar] [CrossRef] [PubMed]
- De Lacey, J.; Brughelli, M.; McGuigan, M.; Hansen, K.; Samozino, P.; Morin, J.B. The effects of tapering on power-force-velocity profiling and jump performance in professional rugby league players. J. Strength Cond. Res. 2014, 28, 3567–3570. [Google Scholar] [CrossRef] [PubMed]
- DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength-power training in track and field. Part 1: Theoretical aspects. J. Sport Health Sci. 2015, 4, 308–317. [Google Scholar] [CrossRef]
- Stone, M.H.; Stone, M.E.; Sands, W.A. Principles And Practice of Resistance Training; Human Kinetics: Champagne, IL, USA, 2007. [Google Scholar]
- Judovtseff, B.; Harris, N.K.; Crielaard, J.; Cronin, J.B. Using the load-velocity relationship for 1RM prediction. J. Strength Cond. Res. 2011, 25, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Fry, A.; Ratamess, N.; French, D. Strength Testing: Development and Evaluation of Methodology; Human Kinetics: Champaign, IL, USA, 1995; pp. 115–138. [Google Scholar]
- Levinger, I.; Goodman, C.; Hare, D.L.; Jerums, G.; Toia, D.; Selig, S. The reliability of the 1RM strength test for untrained middle-aged individuals. J. Sci. Med. Sport 2009, 12, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Changes in muscle architecture and performance during a competitive season in female softball players. J. Strength Cond. Res. 2012, 26, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Storey, A.; Cross, M.R.; Brown, S.R.; Lenetsky, S.; Ramsay, H.; Dillen, C.; Zourdos, M.C. RPE and Velocity Relationships for the Back Squat, Bench Press, and Deadlift in Powerlifters. J. Strength Cond. Res. 2017, 31, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Sinclair, P.J. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J. Strength Cond. Res. 2006, 20, 523–527. [Google Scholar] [PubMed]
- Pereira, M.I.; Gomes, P.S. Movement velocity in resistance training. Sports Med. 2003, 33, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Moore, N.R.; Bird, S.P. Effects of changing from full range of motion to partial range of motion on squat kinetics. J. Strength Cond. Res. 2012, 26, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of power measurement techniques in dynamic lower body resistance exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Matuszak, M.E.; Fry, A.C.; Weiss, L.W.; Ireland, T.R.; McKnight, M.M. Effect of rest interval length on repeated 1 repetition maximum back squats. J. Strength Cond. Res. 2003, 17, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Beck, T.W.; DeFreitas, J.M.; Dillon, M.A. Test-retest reliability of barbell velocity during the free-weight bench-press exercise. J. Strength Cond. Res. 2011, 25, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernandez, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J.D. Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity during the Back Squat Exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
Condition (Mean %1RM ± SD) * | CV | MCV (m·s−1) ± SD | CV |
---|---|---|---|
Load 1 (61.89% ± 3.95) | 6.39 | 0.662 ± 0.067 | 10.116 |
Load 2 (72.81% ± 6.25) | 8.59 | 0.627 + 0.080 | 12.690 |
Load 3 (80.91% + 5.20) | 6.43 | 0.544 + 0.086 | 15.827 |
Load 4 (90.61% + 5.83) | 6.44 | 0.478 + 0.079 | 16.594 |
1RM Load (100.00% + 0.00) | 0.00 | 0.278 + 0.072 | 25.773 |
Failed 1RM Load (102.84% + 1.06) | 1.03 | 0.123 + 0.068 | 55.119 |
Condition (Mean %1RM ± SD) * | CV | Mean Power (W) ± SD | CV |
---|---|---|---|
Load 1 (61.89% ± 3.95) | 6.39 | 1106.8 ± 212.1 | 19.2 |
Load 2 (72.81% ± 6.25) | 8.59 | 1128.9 ± 213.3 | 18.9 |
Load 3 (80.91% + 5.20) | 6.43 | 1044.3 ± 189.5 | 18.1 |
Load 4 (90.61% + 5.83) | 6.44 | 941.1 ± 212.8 | 22.6 |
1RM Load (100.00% + 0.00) | 0.00 | 618.2 ± 208.5 | 33.7 |
Failed 1RM Load (102.84% + 1.06) | 1.03 | 262.9 ± 169.3 | 64.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, K.M.; Sato, K.; Bazyler, C.D.; Triplett, N.T.; Stone, M.H. Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test. Sports 2017, 5, 51. https://doi.org/10.3390/sports5030051
Carroll KM, Sato K, Bazyler CD, Triplett NT, Stone MH. Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test. Sports. 2017; 5(3):51. https://doi.org/10.3390/sports5030051
Chicago/Turabian StyleCarroll, Kevin M., Kimitake Sato, Caleb D. Bazyler, N. Travis Triplett, and Michael H. Stone. 2017. "Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test" Sports 5, no. 3: 51. https://doi.org/10.3390/sports5030051
APA StyleCarroll, K. M., Sato, K., Bazyler, C. D., Triplett, N. T., & Stone, M. H. (2017). Increases in Variation of Barbell Kinematics Are Observed with Increasing Intensity in a Graded Back Squat Test. Sports, 5(3), 51. https://doi.org/10.3390/sports5030051