Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Anthropometry Characteristics
2.4. Dietary Standardisation
2.5. Independent Physical Activity Questionnaire
2.6. Anthocyanin Content
2.7. Estimation of Maximal Oxygen Uptake
2.8. Sprint Criterion Threshold
2.9. Running Anaerobic Sprint Test (RAST)
2.10. Supplementation
2.11. Statistical Analysis
3. Results
3.1. New Zealand Blackcurrant vs. Placebo
3.2. Sprint Performance
3.3. Change in Sprint Performance Compared to Baseline
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kapasakalidis, P.G.; Rastall, R.A.; Gordon, M.H. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem. 2006, 54, 4016–4021. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Leopold, L.; Rugina, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Slavin, M.; Frankenfeld, L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 2016, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.H.; Kim, J.M.; Choi, C.Y.; Chan, Y.K.; Park, K.I. Gingko biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J. Med. Food 2012, 15, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.W.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-b in healthy young adults. J. Funct. Foods 2015, 17, 524–539. [Google Scholar] [CrossRef]
- Lyall, K.A.; Hurst, S.M.; Cooney, J.; Jensen, D.; Lo, K.; Hurst, R.D.; Stevenson, L.M. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am. J. Physiol. Integr. Comp. Physiol. 2009, 297, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomised controlled trial. Nutr. Metab. Cardiovas. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz, A.A.; Hilbert, G.; Mengin, V.; Riviere, C.; Ollat, N.; Vitrac, C.; Bordenave, L.; Decroocq, S.; Delaunay, J.C.; Merillon, J.M.; et al. Anthoncyanin phytochemical profiles and anti-oxidant activities of Vitis candicans and Vitis doaniana. Phytochem. Anal. 2013, 24, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Speciale, A.; Cimino, F.; Saija, A.; Canali, R.; Virgili, F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr. 2014, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Suhr, F.; Gehlert, S.; Grau, M.; Bloch, W. Skeletal muscle function during exercise-fine—tuning of diverse subsystems by nitric oxide. Int. J. Mol. Sci. 2013, 14, 7109–7139. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Takenami, E.; Iwasaki-Kurashige, K.; Osada, T.; Katsumura, T.; Hamaoka, T. Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur. J. Appl. Physiol. 2005, 94, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Willems, M.E.T. Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction. Nutrients 2017, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Perkins, I.C.; Vine, S.A.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves high-intensity intermittent running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Nybo, L.; Jensen, J.M.; Nielsen, J.J.; Bangsbo, J. The Yo-Yo IR2 test: Physiological response, reliability, and application to elite soccer. Med. Sci. Sports Exerc. 2006, 38, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Willems, M.E.T.; Cousins, L.; Williams, D.; Blacker, S.D. Beneficial Effects of New Zealand Blackcurrant Extract on Maximal Sprint Speed during the Loughborough Intermittent Shuttle Test. Sports 2016, 4, 42. [Google Scholar] [CrossRef]
- Carling, C.; Le Gall, F.; Dupont, G. Analysis of repeated high-intensity running performance in professional soccer. J. Sports Sci. 2012, 30, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Bravo, D.F.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sport Med. 2007, 28, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Spencer, M.; Duffield, R.; Lawrence, S. The validity of a repeated sprint ability test. J. Sci. Med. Sport 2001, 4, 19–29. [Google Scholar] [CrossRef]
- Zacharogiannis, E.; Paradisis, G.; Tziortzis, S. An evaluation of tests of anaerobic power and capacity. Med. Sci. Sports Exerc. 2004, 36, S116. [Google Scholar]
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- de Salles Painelli, V.; Saunders, B.; Sale, C.; Harris, R.C.; Solis, M.Y.; Roschel, H.; Gualano, B.; Artioli, G.G.; Lancha, A.H., Jr. Influence of training status on high-intensity intermittent performance in response to β-alanine supplementation. Amino Acids 2014, 46, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict VO2max. Eur. J. Appl. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Bishop, D.; Spencer, M. Testing anaerobic capacity and repeated-sprint ability. In Strength and Conditioning: Biological Principles and Practical Applications; Cardinale, M., Newton, R., Nosaka, K., Eds.; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; L. Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Curran-Everett, D.; Benos, D.J. Guidelines for reporting statistics in journals published by the American Physiological Society. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R247–R249. [Google Scholar] [CrossRef] [PubMed]
- Brocherie, F.; Millet, G.P.; Girard, O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur. J. Appl. Physiol. 2015, 115, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Debold, E.P. Recent insights into the molecular basis of muscular fatigue. Med. Sci. Sports Exerc. 2012, 44, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Matsumoto, H.; Todoki, K. Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn. J. Pharmacol. 2002, 89, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Morales-Alamo, D.; Calbet, J.A.L. Free radicals and sprint exercise in humans. Free Radic. Res. 2013, 48, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Westerblad, H.; Allen, D.G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 2011, 15, 2487–2499. [Google Scholar] [CrossRef] [PubMed]
- Schimpchen, J.; Skorski, S.; Nopp, S.; Meyer, T. Are “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. J. Sports Sci. 2015, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.G.; Walshe, I.H.; Davison, G.W.; Stevenson, E.; Howatson, G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients 2014, 6, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.G.; Walshe, I.H.; Davison, G.W.; Stevenson, E.J.; Howatson, G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl. Physiol. Nutr. Metab. 2015, 40, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. Fatigue is a brain-derived emotion that regulates the exercise behaviour to ensure the protection of whole body homeostasis. Front. Physiol. 2012, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schallig, W.; Veneman, T.; Noordhof, D.A.; Rodríguez-Marroyo, J.A.; Porcari, J.P.; de Koning, J.J.; Foster, C. The Role of the Rating of Perceived Exertion Template in Pacing. Int. J. Sports Physiol. Perform. 2017, 1–22. [Google Scholar] [CrossRef] [PubMed]
Parameter | Trained Youth Football Players (n = 9) | Recreationally Active Football Players (n = 15) |
---|---|---|
Age (years) | 17 ± 0 | 20 ± 1 |
Height (cm) | 178 ± 8 | 174 ± 19 |
Body mass (kg) | 69 ± 9 | 80 ± 13 |
Body fat (%) | 12.1 ± 2.1 | 15.9 ± 2.9 |
Sum of skinfolds (mm) | 28 ± 5 | 40 ± 10 |
O2max (mL·kg·min−1) | 45 ± 5 | 44 ± 5 |
HRmax (beats·min−1) | 200 ± 4 | 185 ± 10 |
Total MET (min·week−1) | 12,393 ± 5375 | 7187 ± 4441 |
Anthocyanin intake (mg·day−1) | 19 ± 23 | 11 ± 14 |
Parameter | One | Two | Three | Four | Five | Six |
---|---|---|---|---|---|---|
Sprint time (s) | ||||||
Placebo | 5.26 ± 0.32 | 5.38 ± 0.30 * | 5.59 ± 0.29 *,$ | 5.68 ± 0.36 *,$ | 5.82 ± 0.42 *,$ | 5.77 ± 0.37 *,$,# |
NZBC extract | 5.25 ± 0.33 | 5.36 ± 0.30 * | 5.51 ± 0.36 *,$ | 5.62 ± 0.42 *,$,# | 5.73 ± 0.43 *,$,#,£ | 5.69 ± 0.40 *,$,# |
RPE | ||||||
Placebo | 8 ± 3 | 9 ± 3 * | 11±3 *,$ | 13 ± 3 *,$,# | 15 ± 3 *,$,#,£ | 16 ± 3 *,$,#,£,@ |
NZBC extract | 7 ± 2 | 9 ± 2 * | 11 ± 2 *,$ | 13 ± 2 *,$,# | 15 ± 3 *,$,#,£ | 16 ± 3 *,$,#,£,@ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godwin, C.; Cook, M.D.; Willems, M.E.T. Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports 2017, 5, 69. https://doi.org/10.3390/sports5030069
Godwin C, Cook MD, Willems MET. Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports. 2017; 5(3):69. https://doi.org/10.3390/sports5030069
Chicago/Turabian StyleGodwin, Charlie, Matthew D. Cook, and Mark E. T. Willems. 2017. "Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players" Sports 5, no. 3: 69. https://doi.org/10.3390/sports5030069
APA StyleGodwin, C., Cook, M. D., & Willems, M. E. T. (2017). Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports, 5(3), 69. https://doi.org/10.3390/sports5030069