Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Timing of Cooling Methods
3.2. Application of Cooling Methods
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bongers, C.C.W.G.; Thijssen, D.H.J.; Veltmeijer, M.T.W.; Hopman, M.T.; Eijsvogels, T.M. Precooling and percooling (cooling during exercise) both improve performance in the heat: A meta-analytical review. Br. J. Sports Med. 2014, 49, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.; Maxwell, N.; Allchorn, A.; Mauger, A.R.; White, D.K. Deception of ambient and body core temperature improves self paced cycling in hot, humid conditions. Eur. J. Appl. Physiol. 2012, 112, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.S. Interconnections between thermal perception and exercise capacity in the heat. Scand. J. Med. Sci. Sports 2010, 20, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Mündel, T.; Jones, D.A. The effects of swilling an L(-) menthol during exercise in the heat. Eur. J. Appl. Physiol. 2010, 109, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.; Daanen, H.A.M.; Levels, K.; Casadio, J.R.; Plews, D.J.; Kilding, A.E.; Siegel, R.; Laursen, P.B. Effect of Thermal State and Thermal Comfort on Cycling Performance in the Heat. Int. J. Sports Physiol. Perform. 2015, 10, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Schmit, C.; Hausswirth, C.; Le Meur, Y.; Duffield, R. Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies. Sports Med. 2016, 47, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol. 2003, 13, 500–505. [Google Scholar] [CrossRef]
- Pageaux, B. The Psychobiological Model of Endurance Performance: An Effort-Based Decision-Making Theory to Explain Self-Paced Endurance Performance. Sports Med. 2014, 14, 1319–1320. [Google Scholar] [CrossRef] [PubMed]
- Swart, J.; Lindsay, T.R.; Lambert, M.I.; Brown, J.C.; Noakes, T.D. Perceptual cues in the regulation of exercise performance—Physical sensations of exercise and awareness of effort interact as separate cues. Br. J. Sports Med. 2012, 46, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but notice slurry ingestion. Scand. J. Med. Sci. Sports 2016, 26, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Riera, F.; Trong, T.T.; Sinnapah, S.; Hue, O. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PLoS ONE 2014, 9, e103718. [Google Scholar] [CrossRef] [PubMed]
- Trong, T.T.; Riera, F.; Rinaldi, K.; Briki, W.; Hue, O. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment. PLoS ONE 2015, 10, e0123815. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Laursen, P.B. Keeping Your Cool. Sports Med. 2012, 42, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.E. Methods, advantages and limitations of body cooling for exercise performance. Br. J. Sports Med. 2002, 36, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Wegmann, M.; Faude, O.; Poppendieck, W.; Hecksteden, A.; Fröhlich, M.; Meyer, T. Pre-Cooling and Sports Performance. Sports Med. 2012, 42, 545–564. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; de Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject group in sport-science research. Int. J. Sports Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Bligh, J.; Johnson, K.G. Glossary of terms for thermal physiology. J. Appl. Physiol. 1973, 35, 941–961. [Google Scholar] [CrossRef] [PubMed]
- Cabanac, M.; Massonnet, B. Thermoregulatory responses as a function of core temperature in humans. J. Physiol. 1977, 265, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Jay, O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol. 2013, 3, 1689–1719. [Google Scholar] [PubMed]
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of power in physical performance tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Dascombe, B.J. The Reliability and Validity of Protocols for the Assessment of Endurance Sports Performance: An Updated Review. Meas. Phys. Educ. Exerc. Sci. 2015, 19, 177–185. [Google Scholar] [CrossRef]
- Zavorsky, G.; Murias, J.; Gow, J.; Kim, D.; Poulin-Harnois, C.; Kubow, S.; Lands, L. Laboratory 20-km Cycle Time Trial Reproducibility. Int. J. Sports Med. 2007, 28, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Linear Models and Effect Magnitudes for Research, Clinical and Practical Applications. Sportscience 2010, 14, 49–58. [Google Scholar]
- De Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Ross, M.; Abbiss, C.; Laursen, P.; Martin, D.; Burke, L. Precooling Methods and Their Effects on Athletic Performance. Sports Med. 2013, 43, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.S.; Lee, J.K.W.; Oksa, J. Thermal stress, human performance, and physical employment standards. Appl. Physiol. Nutr. Metab. 2016, 41, S148–S164. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.; Mitchell, N.; et al. Consensus Recommendations on Training and Competing in the Heat. Sports Med. 2015, 45, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Sunderland, C.; Cheung, S.S. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: A meta-analysis. Br. J. Sports Med. 2013, 49, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Mate, J.; Brearley, M.B.; Watson, G.; Nosaka, K.; Laursen, P.B. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med. Sci. Sports 2010, 42, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Bogerd, N.; Perret, C.; Bogerd, C.P.; Rossi, R.M.; Daanen, H.A. The effect of pre-cooling intensity on cooling efficiency and exercise performance. J. Sports Sci. 2010, 28, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2017, 47, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.L.R.; Garvican, L.A.; Jeacocke, N.A.; Laursen, P.B.; Abbiss, C.R.; Martin, D.T.; Burke, L.M. Novel Precooling Strategy Enhances Time Trial Cycling in the Heat. Med. Sci. Sports Exerc. 2011, 43, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.L.R.; Jeacocke, N.A.; Laursen, P.B.; Martin, D.T.; Abbiss, C.R.; Burke, L.M. Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions. J. Int. Soc. Sports Nutr. 2012, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, J.; Leveritt, M.; Peake, J.M. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. Eur. J. Appl. Phsyiol. 2010, 110, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Dascombe, B.; Boyko, A.; Sculley, D.; Callister, R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J. Sports Sci. 2013, 31, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Mate, J.; Watson, G.; Nosaka, K.; Laursen, P.B. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J. Sports Sci. 2012, 30, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P. From science to practice: Development of a thermally-insulated ice slushy dispensing bottle that helps athletes “keep their cool” in hot temperatures. Temperature 2016, 3, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med. 2014, 44, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Munoz, C.X.; Carney, K.R.; Schick, M.K.; Coburn, J.W.; Becker, A.J.; Judelson, D.A. Effects of oral rehydration and external cooling on physiology, perception, and performance in hot, dry climates. Scand. J. Med. Sci. Sports 2012, 22, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Kittel, A.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance in the heat is improved by similar magnitude with pre-exercise cold-water immersion and mid-exercise facial water spray. J. Sports Sci. 2017, 35, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.; Ishiuji, Y.; Yosipovitch, G. Menthol: A refreshing look at this ancient compound. J. Am. Acad. Dermatol. 2007, 57, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Schepers, R.J.; Ringkamp, M. Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 2010, 34, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R. Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 2000, 34, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R.; Du-Plessis, L.; Dommels, Y.; Wilkinson, J.E. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream. Appetite 2013, 71, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.P.; Lang, J.; Bull, A.; Eckerson, J.; Lanspa, S.; O’Brien, J. Fluid Tolerance while Running: Effect of Repeated Trials. Int. J. Sports Med. 2008, 29, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Haymes, E.M. Thermoregulation and Marathon Running. Sports Med. 2001, 31, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.B.; Jay, O. To drink or to pour: How should athletes use water to cool themselves? Temperature 2016, 3, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Filingeri, D. Neurophysiology of Skin Thermal Sensations. Compr. Physiol. 2016, 6, 1429–1491. [Google Scholar] [PubMed]
- Eijsvogels, T.M.H.; Bongers, C.C.W.G.; Veltmeijer, M.T.W.; Moen, M.H.; Hopman, M. Cooling during Exercise in Temperate Conditions: Impact on Performance and Thermoregulation. Int. J. Sports Med. 2014, 35, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.; van Loon, L.J.C.; van Marken Lichtenbelt, W.D. Thermoregulation during exercise in the heat: Strategies for maintaining health and performance. Sports Med. 2007, 37, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Ouzzahra, Y.; Havenith, G.; Redortier, B. Regional distribution of thermal sensitivity to cold at rest and during mild exercise in males. J. Therm. Biol. 2012, 37, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Competitive performance of elite track and field athletes: Variability and smallest worthwhile enhancements. Sportscience 2005, 9, 17–20. [Google Scholar]
- Hopkins, W.G.; Hewson, D.J. Variability of competitive performance of distance runners. Med. Sci. Sports Exerc. 2001, 33, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, B.R.; Hagin, V.; Guillot, R.; Placet, V.; Monnier-Benoit, P.; Alain, G. Self-paced cycling performance and recovery under a hot and highly humid environment after cooling. J. Sports Med. Phys. Fitness 2014, 54, 43–52. [Google Scholar] [PubMed]
- Hurst, P.; Board, L. Reliability of 5-km Running Performance in a Competitive Environment. Meas. Phys. Ed. Exerc. Sci. 2017, 1, 10–14. [Google Scholar] [CrossRef]
- Paton, C.D.; Hopkins, W.G. Competitive performance of elite Olympic-distance triathletes: Reliability and smallest worthwhile enhancement. Sportscience 2005, 9, 1–5. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Selected issues in the design and analysis of sport performance research. J. Sports Sci. 2001, 19, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Schlader, Z.J. Human behavioral thermoregulation during exercise in the heat. Scand. J. Med. Sci. Sports 2015, 25, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Roelands, B.; De Pauw, K.; Meeusen, R. Neurophysiological effects of exercise in the heat. Scand. J. Med. Sci. Sports 2015, 25, 65–78. [Google Scholar] [CrossRef] [PubMed]
Author | Participants | Timing | Intervention | Modality | Outcomes |
---|---|---|---|---|---|
Ross et al., 2011 | 11 | Precooling | Ice | Cycling | TT, PO, Trec, TC |
Ross et al., 2012 | 12 | Precooling | Ice + T, Ice + G + T | Cycling | TT, PO, RPE, TC |
Muñoz et al., 2012 | 10 | Percooling | OR, EXC, EXC + OR | Running | TT, Trec, TC, RPE |
Stanley et al., 2010 | 10 | Percooling | Ice, COOL | Cycling | TT, PO, Trec |
Stevens et al., 2013 | 9 | Percooling | Ice | Triathlon/Running | TT, Trec, RPE, TC |
Stevens et al., 2015 | 11 | Precooling/Percooling | Ice, M | Running | TT, Trec, RPE, TS |
Stevens et al., 2017 | 9 | Percooling | M | Running | TT, Trec, RPE, TS |
Riera et al., 2014 | 12 | Combined | N, N + M, COOL, COOL + M, Ice, Ice + M | Cycling | TT, TC, TS, RPE |
Tran Trong et al., 2015 | 10 | Combined | N + M, COOL + M, Ice + M | Cycling/Running | TT, TC, TS, RPE |
Schulze et al., 2015 | 7 | Combined | Ice, PC + Ice | Cycling | TT, PO, Trec, TC, TS |
Author | Timing | Intervention | ∆ Performance (s) |
---|---|---|---|
Ross et al., 2011 | Precooling | Ice | −66.0 ± 29.4 |
Ross et al., 2012 | Precooling | Ice + T | −18.6 ± 28.8 |
- | - | Ice + G + T | 0.0 ± 1.2 |
Muñoz et al., 2012 | Percooling | OR | −60.0 ± 81.0 |
- | - | EXC | −48.0 ± 85.2 |
- | - | EXC + OR | −63.0 ± 52.2 |
Stanley et al., 2010 | Percooling | Ice | −33.6 ± 60 |
Stevens et al., 2013 | Percooling | Ice | −72.0 ± 18.0 |
Stevens et al., 2015 | Precooling | Ice | 18.0 ± 12.0 |
- | Percooling | M | −42.0 ± 6.0 |
Stevens et al., 2017 | Percooling | M | −36.0 ± 6.0 |
Riera et al., 2014 | Combined | N + M | −49.8 ± 33.6 |
- | - | COOL | 36 ± 139.8 |
- | - | COOL + M | −162.6 ± 39.0 |
- | - | Ice | −121.2 ± 12.6 |
- | - | Ice + M | −232.8 ± 51.0 |
Tran Trong et al., 2015 | Combined | COOL + M | −136.2 ± 252.0 |
- | - | Ice + M | −283.2 ± 232.8 |
Schulze et al., 2015 | Combined | Ice | −23.4 ± 0.0 |
- | - | Ice + T | 4.8 ± 6.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, R.; Payton, S.; Spears, I.; Riera, F.; Berger, N. Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports 2018, 6, 11. https://doi.org/10.3390/sports6010011
Best R, Payton S, Spears I, Riera F, Berger N. Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports. 2018; 6(1):11. https://doi.org/10.3390/sports6010011
Chicago/Turabian StyleBest, Russ, Stephen Payton, Iain Spears, Florence Riera, and Nicolas Berger. 2018. "Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat" Sports 6, no. 1: 11. https://doi.org/10.3390/sports6010011
APA StyleBest, R., Payton, S., Spears, I., Riera, F., & Berger, N. (2018). Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports, 6(1), 11. https://doi.org/10.3390/sports6010011