Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Testing Procedures
2.3. Methodology
2.4. Statistical Analyses
3. Results
4. Discussion and Conclusions
Author Contributions
Conflicts of Interest
References
- Carling, C.; Dupont, G. Are declines in physical performance associated with a reduction in skill-related performance during professional soccer match-play? J. Sports Sci. 2011, 29, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Noakes, T.D. Match running performance fluctuations in elite soccer: Indicative of fatigue, pacing or situational influences? J. Sports Sci. 2013, 31, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T. Motion analysis and physiological demands. In Science and Soccer, 2nd ed.; Reilly, T., Williams, A.M., Eds.; Routledge: Oxon, UK, 2003; pp. 59–72. ISBN 0-415-26231-3. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Deceleration movements performed during FA Premier League soccer matches (abstract). J. Sports Sci. Med. 2007, 6, 6. [Google Scholar]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Di Prampero, E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.G.; De Ruiter, C.J.; van Maurik, D.; van Lierop, C.J.; Savelsbergh, G.J.; Beek, P.J. Measured and Estimated Energy Cost of Constant and Shuttle Running in Soccer Players. Med. Sci. Sports Exerc. 2015, 47, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; French, D.; Thompson, K.G.; Hayes, P.R. The physiological consequences of acceleration during shuttle running. Int. J. Sports Med. 2015, 36, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Zadro, I.; Lazzer, S.; Beato, M.; Sepulcri, L. Energetics of shuttle runs: The effects of distance and change of direction. Int. J. Sports Physiol. Perform. 2014, 9, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Mendez-Villanueva, A.; Ahmaidi, S.; Williams, B.K.; Buchheit, M. Changes of direction during high-intensity intermittent runs: Neuromuscular and metabolic responses. BMC Sports Sci. Med. Rehabilit. 2014, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Buglione, A.; Di Prampero, P.E. The energy cost of shuttle running. Eur. J. Appl. Physiol. 2013, 113, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Hatamoto, Y.; Yamada, Y.; Fujii, T.; Higaki, Y.; Kiyonaga, A.; Tanaka, H. A novel method for calculating the energy cost of turning during running. J. Sports Med. 2013, 4, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Haydar, B.; Hader, K.; Ufland, P.; Ahmaidi, S. Assessing running economy during field running with changes of direction: Application to 20 m shuttles. Int. J. Sports Physiol. Perform. 2011, 6, 380–395. [Google Scholar] [CrossRef] [PubMed]
- Dellal, A.; Keller, D.; Carling, C.; Chaouachi, A.; Wong, D.P.; Chamari, K. Physiological effects of directional changes in intermittent exercise in soccer players. J. Strength Cond. Res. 2010, 24, 3219–3226. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Mendez-Villanueva, A.; Palazzi, D.; Ahmaidi, S.; Buchheit, M. Metabolic power requirement of change of direction speed in young soccer players: Not all is what it seems. PLoS ONE 2016, 11, e0149839. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Haydar, B.; Ahmaidi, S. Repeated sprints with directional change: Do angles matter? J. Sports Sci. 2012, 30, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Bishop, D.; Haydar, B.; Nakamura, F.Y.; Ahmaidi, S. Physiological responses to shuttle repeated-sprint running. Int. J. Sports Med. 2010, 31, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.; Hector, L.L.; Welsh, R.; Schrager, M.; Green, M.A.; Snyder, A.C. Effects of specific versus cross-training on running performance. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Varley, M.; Fairweather, I.; Aughey, R. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.P.; Hopkinson, T.L.; Wundersitz, D.W.; Serpell, B.G.; Mara, J.K.; Ball, N.B. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J. Strength Cond. Res. 2016, 30, 3007–3013. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Nassis, G.P. Training load monitoring in high-level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Statsports Technologies Ltd. Viper Metrics; Statsports: Louth, UK, 2012. [Google Scholar]
- Kelly, D.M.; Strudwick, A.J.; Atkinson, G.; Drust, B.; Gregson, W. The within-participant correlation between perception of effort and heart rate-based estimations of training load in elite soccer players. J. Sports Sci. 2016, 34, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Spreadsheet for analysis of controlled trials with adjustment for a subject characteristics. Sportscience 2006, 10, 46–50. [Google Scholar]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. A New View of Statistics 2000. Retrieved 25 March 2018. Available online: http://www.sportsci.org/resource/stats/index.html (accessed on 20 March 2018).
- Nedergaard, N.J.; Kersting, U.; Lake, M.J. Using accelerometry to quantify deceleration during a high intensity soccer turning manoeuvre. J. Sports Sci. 2014, 32, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Knuttgen, H.G.; Klaussen, K. Oxygen debt in short-term exercise with concentric and eccentric muscle contraction. J. Appl. Physiol. 1971, 30, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W. Physiological responses to downhill walking in older and younger individuals. J. Exerc. Physiol. 2004, 7, 45–51. [Google Scholar]
- Pivarnik, J.M.; Sherman, N.W. Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Med. Sci. Sports Exerc. 1990, 22, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A.; Wagner, D.R.; Skemp, K.M. Oxygen consumption and energy expenditure of level versus downhill running. J. Sports Med. Phys. Fit. 1997, 37, 168–174. [Google Scholar]
- Di Prampero, E.; Fusi, S.; Sepulcri, L.; Morin, J.B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol. 2005, 208, 2809–2816. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G.A.; Komarek, L.; Mazzoleni, S. The mechanics of sprint running. J. Physiol. 1971, 217, 709–721. [Google Scholar] [CrossRef] [PubMed]
Total Running Distance | No. of Runs | Distance of Each Run | Protocol Duration | HIR Speed | No. of Decelerations | No. of Accelerations | |
---|---|---|---|---|---|---|---|
1 DC | 144 m | 2 | 72 m | 25.5 s | 6 m/s | 1 | 2 |
3 DC | 144 m | 4 | 36 m | 28.5 s | 6 m/s | 3 | 4 |
7 DC | 144 m | 8 | 18 m | 34.5 s | 6 m/s | 7 | 8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Murtagh, C.; Warrington, G.; Cable, T.; Morgan, O.; O’Boyle, A.; Burgess, D.; Morgans, R.; Drust, B. Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players. Sports 2018, 6, 39. https://doi.org/10.3390/sports6020039
Tang R, Murtagh C, Warrington G, Cable T, Morgan O, O’Boyle A, Burgess D, Morgans R, Drust B. Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players. Sports. 2018; 6(2):39. https://doi.org/10.3390/sports6020039
Chicago/Turabian StyleTang, Remy, Conall Murtagh, Giles Warrington, Tim Cable, Oliver Morgan, Andrew O’Boyle, Darren Burgess, Ryland Morgans, and Barry Drust. 2018. "Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players" Sports 6, no. 2: 39. https://doi.org/10.3390/sports6020039
APA StyleTang, R., Murtagh, C., Warrington, G., Cable, T., Morgan, O., O’Boyle, A., Burgess, D., Morgans, R., & Drust, B. (2018). Directional Change Mediates the Physiological Response to High-Intensity Shuttle Running in Professional Soccer Players. Sports, 6(2), 39. https://doi.org/10.3390/sports6020039