High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness
Abstract
:1. Introduction
2. HIIT vs. HIFT: Key Differences
3. Historical Perspective of HIFT
4. Utilization of HIFT Programs in the General Population
5. Application of HIFT with Tactical Athletes
5.1. Firefighter Fitness Studies
5.2. Law Enforcement Officer Fitness Studies
6. Safety
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Martínez, E.; Santalla, A.; Orellana, J.N.; Strobl, J.; Burtscher, M.; Menz, V. Influence of high-intensity interval training on ventilatory efficiency in trained athletes. Respir. Physiol. Neurobiol. 2018, 250, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Lesmes, G.R.; Fox, E.L.; Stevens, C.; Otto, R. Metabolic responses of females to high intensity interval training of different frequencies. Med. Sci. Sports 1978, 10, 229–232. [Google Scholar] [PubMed]
- Thompson, W.R. Worldwide survey of fitness trends for 2018: The CREP edition. ACSM’S Health Fit. J. 2017, 21, 10–19. [Google Scholar] [CrossRef]
- Bayati, M.; Farzad, B.; Gharakhanlou, R.; Agha-Alinejad, H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. J. Sports Sci. Med. 2011, 10, 571–576. [Google Scholar] [PubMed]
- Driller, M.W.; Fell, J.W.; Gregory, J.R.; Shing, C.M.; Williams, A.D. The effects of high-intensity interval training in well-trained rowers. Int. J. Sports Physiol. Perform. 2009, 4, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Edge, J.; Bishop, D. Effects of high-intensity interval training on the vo2 response during severe exercise. J. Sci. Med. Sport 2006, 9, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Esfarjani, F.; Laursen, P.B. Manipulating high-intensity interval training: Effects on vo2max, the lactate threshold and 3000 m running performance in moderately trained males. J. Sci. Med. Sport 2007, 10, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar] [PubMed]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Glassman, G. Understanding CrossFit. CrossFit J. 2007, 56, 1–2. [Google Scholar]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of hift. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; Sales, A.; Carlson, L.; Steele, J. A comparison of the motivational factors between CrossFit participants and other resistance exercise modalities: A pilot study. J. Sports Med. Phys. Fit. 2017, 1227–1234. [Google Scholar] [CrossRef]
- Simpson, D.; Prewitt-White, T.R.; Feito, Y.; Giusti, J.; Shuda, R. Challenge, commitment, community, and empowerment: Factors that promote the adoption of CrossFit as a training program. Sports J. 2017, 1–7. [Google Scholar]
- Bycura, D.; Feito, Y.; Prather, C.C. Motivational factors in CrossFit® training participation. Health Behav. Policy Rev. 2017, 4, 539–550. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Carlisle, T.; Kehler, A.; Cosgrove, S.J. Mapping coaches’ views of participation in CrossFit to the integrated theory of health behavior change and sense of community. Fam. Community Health 2017, 40, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Poston, W.S.; Haddock, C.K.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N.; Batchelor, D.B. Is high-intensity functional training (HIFT)/CrossFit safe for military fitness training? Mil. Med. 2016, 181, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Sanchez-Lorente, J.; Blazevich, A.J. Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J. Strength Cond. Res. 2008, 22, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Baștuğ, G.; Özcan, R.; Gültekin, D.; Günay, Ö. The effects of cross-fit, pilates and zumba exercise on body composition and body image of women. Int. J. Sports Exerc. Train. Sci. 2016, 2, 22–29. [Google Scholar] [CrossRef]
- Barfield, J.; Channell, B.; Pugh, C.; Tuck, M.; Pendel, D. Format of basic instruction program resistance training classes: Effect on fitness change in college students. Phys. Educ. 2012, 69, 325–341. [Google Scholar]
- De Sousa, A.F.; dos Santos, G.B.; dos Reis, T.; Valerino, A.J.; Del Rosso, S.; Boullosa, D.A. Differences in physical fitness between recreational CrossFit® and resistance trained individuals. J. Exer. Physiol. Online 2016, 19, 112–122. [Google Scholar]
- Paine, J.; Uptgraft, J.; Wylie, R. Crossfit Study, May 2010; Command and General Staff College: Fort Leavenworth, KS, USA, 2010. [Google Scholar]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, G.; Payne, A.; Zelt, J.G.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Cochran, A.J.; Percival, M.E.; Tricarico, S.; Little, J.P.; Cermak, N.; Gillen, J.B.; Tarnopolsky, M.A.; Gibala, M.J. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp. Physiol. 2014, 99, 782–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medcine. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [PubMed]
- Sperlich, B.; Wallmann-Sperlich, B.; Zinner, C.; Von Stauffenberg, V.; Losert, H.; Holmberg, H.C. Functional high-intensity circuit training improves body composition, peak oxygen uptake, strength, and alters certain dimensions of quality of life in overweight women. Front. Physiol. 2017, 8, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kliszczewicz, B.; John, Q.C.; Daniel, B.L.; Gretchen, O.D.; Michael, E.R.; Kyle, T.J. Acute exercise and oxidative stress: Crossfit™ vs. Treadmill bout. J. Hum. Kinet. 2015, 47, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Kliszczewicz, B.; Buresh, R.; Bechke, E.; Williamson, C. Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. J. Hum. Sport Exerc. 2017, 12, 710–718. [Google Scholar] [CrossRef]
- Haddock, C.K.; Poston, W.S.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N. The benefits of high-intensity functional training fitness programs for military personnel. Mil. Med. 2016, 181, e1508–e1514. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Acsm’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Department of War. FM 21–20, Physical Fitness; Government Printing Office: Washington, DC, USA, 1946.
- Batchelor, J.E. The Applicability of the Army Physical Fitness Test in the Contemporary Operating Environment; U.S. Army Command and General Staff College: Fort Leavenworth, KS, USA, 2008. [Google Scholar]
- Lowman, C.T. Does Current Army Physical Fitness Training Doctrine Adequately Prepare Soldiers for War? U.S. Army Command and General Staff College: Fort Leavenworth, KS, USA, 2010. [Google Scholar]
- Roy, T.C.; Springer, B.A.; McNulty, V.; Butler, N.L. Physical fitness. Mil. Med. 2010, 175, 14–20. [Google Scholar] [CrossRef]
- Showman, N.; Henson, P. Us army physical readiness training protocols. Mil. Rev. 2014, 94, 12. [Google Scholar]
- Withrow, K. Army Physical (Un)fitness: A System that Promotes Injury and Poor Nutrition. Army Times. Available online: https://www.armytimes.com/2016/08/19/army-physical-un-fitness-a-system-that-promotes-injury-and-poor-nutrition/ (accessed on 2 August 2017).
- Hodzovic, E. High-Intensity Functional Training = Efficient Exercise. Available online: https://www.strengthandconditioningresearch.com/perspectives/high-intensity-functional-training/ (accessed on 19 July 2017).
- Centers for Disease Control Prevention. Adult participation in aerobic and muscle-strengthening physical activities—United States, 2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 326–330. [Google Scholar]
- Marcus, B.H.; Williams, D.M.; Dubbert, P.M.; Sallis, J.F.; King, A.C.; Yancey, A.K.; Franklin, B.A.; Buchner, D.; Daniels, S.R.; Claytor, R.P. Physical activity intervention studies: What we know and what we need to know: A scientific statement from the American heart association council on nutrition, physical activity, and metabolism (subcommittee on physical activity); council on cardiovascular disease in the young; and the interdisciplinary working group on quality of care and outcomes research. Circulation 2006, 114, 2739–2752. [Google Scholar] [PubMed]
- Perri, M.G.; Anton, S.D.; Durning, P.E.; Ketterson, T.U.; Sydeman, S.J.; Berlant, N.E.; Kanasky, W.F.; Newton, R.L.; Limacher, M.C.; Martin, A.D. Adherence to exercise prescriptions: Effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol. 2002, 21, 452. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Perri, M.G.; Riley, J., III; Kanasky, W.F., Jr.; Rodrigue, J.R.; Sears, S.F.; Martin, A.D. Differential predictors of adherence in exercise programs with moderate versus higher levels of intensity and frequency. J. Sport Exerc. Psychol. 2005, 27, 171–187. [Google Scholar] [CrossRef]
- Sylvester, B.D.; Curran, T.; Standage, M.; Sabiston, C.M.; Beauchamp, M.R. Predicting exercise motivation and exercise behavior: A moderated mediation model testing the interaction between perceived exercise variety and basic psychological needs satisfaction. Psychol. Sport Exerc. 2018, 36, 50–56. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Carraca, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.; Wikman, J.M.; Jensen, C.J.; Schmidt, J.F.; Gliemann, L.; Andersen, T.R. Health promotion: The impact of beliefs of health benefits, social relations and enjoyment on exercise continuation. Scand. J. Med. Sci. Sports 2014, 24 (Suppl. 1), 66–75. [Google Scholar] [CrossRef] [Green Version]
- Cadmus-Bertram, L.; Irwin, M.; Alfano, C.; Campbell, K.; Duggan, C.; Foster-Schubert, K.; Wang, C.Y.; McTiernan, A. Predicting adherence of adults to a 12-month exercise intervention. J. Phys. Act. Health 2014, 11, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Köteles, F.; Kollsete, M.; Kollsete, H. Psychological concomitants of CrossFit training: Does more exercise really make your everyday psychological functioning better? Kineziologija 2016, 48, 39–48. [Google Scholar]
- Sibley, B.A.; Bergman, S.M. What keeps athletes in the gym? Goals, psychological needs, and motivation of CrossFit™ participants. Int. J. Sport Exerc. Psychol. 2017, 1–20. [Google Scholar] [CrossRef]
- Davies, M.J.; Coleman, L.; Stellino, M.B. The relationship between basic psychological need satisfaction, behavioral regulation, and participation in CrossFit. J. Sport Behav. 2016, 39, 239. [Google Scholar]
- Partridge, J.A.; Knapp, B.A.; Massengale, B.D. An investigation of motivational variables in CrossFit facilities. J. Strength Cond. Res. 2014, 28, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, S. Getting Physical: The Rise of Fitness Culture in America; University Press of Kansas Lawrence: Lawrence, KS, USA, 2013. [Google Scholar]
- Dawson, M.C. CrossFit fitness cult or reinventive institution? Int. Rev. Sociol. Sport 2015. [Google Scholar] [CrossRef]
- Whiteman-Sandland, J.; Hawkins, J.; Clayton, D. The role of social capital and community belongingness for exercise adherence: An exploratory study of the CrossFit gym model. J. Health Psychol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Markula-Denison, P.; Pringle, R. Foucault, Sport and Exercise: Power, Knowledge and Transforming the Self; Routledge: New York, NY, USA, 2006. [Google Scholar]
- Schuller, T.; Baron, S.; Field, J. Social capital: A review and critique. In Social Capital: Critical Perspectives; Baron, S., Field, J., Schuller, T., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 1–38. [Google Scholar]
- Sigelman, C.K.; Rider, E.A. Life-Span Human Development; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Heywood, L. The CrossFit sensorium: Visuality, affect and immersive sport. Paragraph 2015, 38, 20–36. [Google Scholar] [CrossRef]
- Lichtenstein, M.B.; Jensen, T.T. Exercise addiction in CrossFit: Prevalence and psychometric properties of the exercise addiction inventory. Addict. Behav. Rep. 2016, 3, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Washington, M.S.; Economides, M. Strong is the new sexy: Women, CrossFit, and the postfeminist ideal. J. Sport Soc. Issues 2016, 40, 143–161. [Google Scholar] [CrossRef]
- Kohrt, W.; Bloomfield, S.; Little, K.; Nelson, M.; Yingling, V. Physical activity and bone health. Position stand of the american college of sports medicine. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, S.; Fealy, C.E.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J.P. Functional high-intensity training improves pancreatic beta-cell function in adults with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E314–E320. [Google Scholar] [CrossRef] [PubMed]
- Fealy, C.E.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Cruz, L.A.; Li, M.; Rocco, M.; Burguera, B.; et al. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp. Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Waryasz, G.R.; Suric, V.; Daniels, A.H.; Gil, J.A.; Eberson, C.P. Crossfit® instructor demographics and practice trends. Orthop. Rev. 2016, 8, 6571. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, C.; Ruth, K.; Friesen, C. Sports nutrition knowledge, perceptions, resources, and advice given by certified CrossFit trainers. Sports 2017, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N. CrossFit: Remember what you have learned; apply what you know. J. Exerc. Physiol. Online 2015, 18, 32–44. [Google Scholar]
- Achauer, H. Top Five Hydration Myths Busted. Available online: https://journal.CrossFit.com/article/top-five-hydration-myths-busted-2 (accessed on 3 January 2018).
- Cecil, A.M. Nutrition: Real Science Stands against Industry Myths. Available online: https://journal.CrossFit.com/article/conference-cecil-2 (accessed on 3 January 2018).
- Sibley, B.A. Using sport education to implement a CrossFit unit. J. Phys. Educ. Recreat. Dance 2012, 83, 42–48. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Vescovi, J.D.; Volek, J.S.; Nindl, B.C.; Newton, R.U.; Patton, J.F.; Dziados, J.E.; French, D.N.; Häkkinen, K. Effects of concurrent resistance and aerobic training on load-bearing performance and the army physical fitness test. Mil. Med. 2004, 169, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Vogel, J.A.; Patton, J.F.; Dziados, J.E.; Reynolds, K.L. The Effects of Various Physical Training Programs on Short Duration, High Intensity Load Bearing Performance and the Army Physical Fitness Test (No. Usariem-30/87); ARMY Research Institute of Environmental Medicine: Natick, MA, USA, 1987. [Google Scholar]
- Jones, B.H.; Hauschild, V.D. Physical training, fitness, and injuries: Lessons learned from military studies. J. Strength Cond. Res. 2015, 29 (Suppl. 11), S57–S64. [Google Scholar] [CrossRef]
- O’Hara, R.B.; Serres, J.; Traver, K.L.; Wright, B.; Vojta, C.; Eveland, E. The influence of nontraditional training modalities on physical performance: Review of the literature. Aviat. Space Environ.Med. 2012, 83, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Schneider, J.; Hubbard, M.; McCullough-Shock, T.; Cheng, D.; Simms, K.; Hartman, J.; Hinton, P.; Strauss, D. Measurement of functional capacity requirements of police officers to aid in development of an occupation-specific cardiac rehabilitation training program. In Baylor University Medical Center Proceedings; Taylor & Francis: Boca Raton, FL, USA, 2010; pp. 7–10. [Google Scholar]
- Anderson, G.S.; Plecas, D.; Segger, T. Police officer physical ability testing–re-validating a selection criterion. Polic. Int. J. Police Strateg. Manag. 2001, 24, 8–31. [Google Scholar] [CrossRef]
- Beck, A.Q. Relationship between Physical Fitness Measures and Occupational Physical Ability in University Law Enforcement Officers. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2012. [Google Scholar]
- Elsner, K.L.; Kolkhorst, F.W. Metabolic demands of simulated firefighting tasks. Ergonomics 2008, 51, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.A.; Parpa, K.M.; Thompson, J.; Brown, B. Predicting performance on a firefghter’s ability test from fitness parameters. Res. Q. Exerc. Sport 2008, 79, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.A.; Parpa, K.M.; Henry, L.J.; Thompson, G.B.; Brown, B.S. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J. Strength Cond. Res. 2011, 25, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R.; Alvar, B.A.; Gray, R. Physical fitness and job performance of firefighters. J. Strength Cond. Res. Res. J. NSCA 2004, 18, 348–352. [Google Scholar]
- Sheaff, A.K.; Bennett, A.; Hanson, E.D.; Kim, Y.-S.; Hsu, J.; Shim, J.K.; Edwards, S.T.; Hurley, B.F. Physiological determinants of the candidate physical ability test in firefighters. J. Strength Cond. Res. 2010, 24, 3112–3122. [Google Scholar] [CrossRef] [PubMed]
- Abel, M. Concerns and benefits of on-duty exercise training for firefighters. NSCA TSCA Report, 2012; Volume 23, 1–4. [Google Scholar]
- Abel, M.G.; Palmer, T.G.; Trubee, N. Exercise program design for structural firefighters. Strength Cond. J. 2015, 37, 8–19. [Google Scholar] [CrossRef]
- Abel, M.G.; Sell, K.; Dennison, K. Design and implementation of fitness programs for firefighters. Strength Cond. J. 2011, 33, 31–42. [Google Scholar] [CrossRef]
- Durand, G.; Tsismenakis, A.J.; Jahnke, S.A.; Baur, D.M.; Christophi, C.A.; Kales, S.N. Firefighters’ physical activity: Relation to fitness and cardiovascular disease risk. Med. Sci. Sports Exerc. 2011, 43, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Clasey, J.L.; Palmer, T.; Symons, T.B.; Abel, M.G. The effect of a novel tactical training program on physical fitness and occupational performance in firefighters. J. Strength Cond. Res. 2015, 29, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L. Firefighter fitness: Improving performance and preventing injuries and fatalities. Curr. Sports Med. Rep. 2011, 10, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Leahy, G. Concurrent Training: Is There an “Interference Effect” on Tactical Performance. NSCA TSAC Report, 2012; Volume 23, 9–11. [Google Scholar]
- Abel, M.G.; Mortara, A.J.; Pettitt, R.W. Evaluation of circuit-training intensity for firefighters. J. Strength Cond. Res. 2011, 25, 2895–2901. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.A.; O’dea, J.; Boyce, A.; Mannix, E.T. Fitness levels of firefighter recruits before and after a supervised exercise training program. J. Strength Cond. Res. 2002, 16, 271–277. [Google Scholar] [PubMed]
- Peterson, M.D.; Dodd, D.J.; Alvar, B.A.; Rhea, M.R.; Favre, M. Undulation training for development of hierarchical fitness and improved firefighter job performance. J. Strength Cond. Res. 2008, 22, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.C.; Regan, T.L.; Harber, P.; Lutz, E.A.; Hu, C.; Peate, W.F.; Burgess, J.L. Evaluation of a fitness intervention for new firefighters: Injury reduction and economic benefits. Inj. Prev. 2016, 22, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Crawley, A.A.; Sherman, R.A.; Crawley, W.R.; Cosio-Lima, L.M. Physical fitness of police academy cadets: Baseline characteristics and changes during a 16-week academy. J. Strength Cond. Res. 2016, 30, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Cocke, C.; Dawes, J.; Orr, R.M. The use of 2 conditioning programs and the fitness characteristics of police academy cadets. J. Athl. Train. 2016, 51, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Junior, L.C.H.; Costa, L.O.P.; Lopes, A.D. Previous injuries and some training characteristics predict running-related injuries in recreational runners: A prospective cohort study. J. Physiother. 2013, 59, 263–269. [Google Scholar] [CrossRef]
- Parkkari, J.; Kannus, P.; Natri, A.; Lapinleimu, I.; Palvanen, M.; Heiskanen, M.; Vuori, I.; Jarvinen, M. Active living and injury risk. Int. J. Sports Med. 2004, 25, 209–216. [Google Scholar] [PubMed]
- Domene, P.A.; Clarke, N.D.; Delextrat, A.A.; Easton, C. Injury surveillance of female adult zumba® dancers. J. Sports Med. Phys. Fit. 2017, 57, 1642–1649. [Google Scholar] [CrossRef]
- Han, A.P. Journal Retracts Ohio State CrossFit Study at Center of Lawsuits. Available online: http://retractionwatch.com/2017/06/02/journal-retracts-ohio-state-CrossFit-study-center-lawsuits/ (accessed on 6 October 2017).
- Han, A.P. Researcher Who Tangled with CrossFit Loses Two More Papers. Available online: http://retractionwatch.com/2017/06/30/researcher-tangled-CrossFit-loses-two-papers/#more-50890 (accessed on 6 October 2017).
- Moran, S.; Booker, H.; Staines, J.; Williams, S. Rates and risk factors of injury in CrossFit: A prospective cohort study. J. Sports Med. Phys. Fit. 2017, 57, 1147–1153. [Google Scholar]
- Montalvo, A.M.; Shaefer, H.; Rodriguez, B.; Li, T.; Epnere, K.; Myer, G.D. Retrospective injury epidemiology and risk factors for injury in CrossFit. J. Sports Sci. Med. 2017, 16, 53–59. [Google Scholar] [PubMed]
- Summitt, R.J.; Cotton, R.A.; Kays, A.C.; Slaven, E.J. Shoulder injuries in individuals who participate in CrossFit training. Sports Health 2016, 8, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Klimek, C.; Ashbeck, C.; Brook, A.J.; Durall, C. Are injuries more common with CrossFit training than other forms of exercise? J. Sport Rehabil. 2018, 27, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of CrossFit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.F.; Nindl, B.C.; Deuster, P.A.; Baumgartner, N.; Kane, S.F.; Kraemer, W.J.; Sexauer, L.R.; Thompson, W.R.; O’Connor, F.G. Consortium for health and military performance and american college of sports medicine consensus paper on extreme conditioning programs in military personnel. Curr. Sports Med. Rep. 2011, 10, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Grier, T.; Canham-Chervak, M.; McNulty, V.; Jones, B.H. Extreme conditioning programs and injury risk in a US army brigade combat team. US Army Med. Dep. J. 2013, 4, 36–47. [Google Scholar]
- Knapik, J.J. Extreme conditioning programs: Potential benefits and potential risks. J. Spec. Oper. Med. 2015, 15, 108–113. [Google Scholar] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. https://doi.org/10.3390/sports6030076
Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports. 2018; 6(3):76. https://doi.org/10.3390/sports6030076
Chicago/Turabian StyleFeito, Yuri, Katie M. Heinrich, Scotty J. Butcher, and Walker S. Carlos Poston. 2018. "High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness" Sports 6, no. 3: 76. https://doi.org/10.3390/sports6030076
APA StyleFeito, Y., Heinrich, K. M., Butcher, S. J., & Poston, W. S. C. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076