The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Body Composition Testing
2.4. Isometric Mid-Thigh Pull Testing
2.5. Muscle Ultrasound Measurement
2.6. Maximal Strength Testing
2.7. Workout of the Day (WOD) Testing
2.8. Supplementation Protocol
2.9. Dietary Logs
2.10. 8-Week High Intensity Functional Training Intervention
2.11. Statistical Analysis
3. Results
3.1. Strength, IMTP, and WOD Performance
3.2. Body Composition & Muscle Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Lemon, P.W. Beyond the zone: Protein needs of active individuals. J. Am. Coll of Nutr 2000, 19, S513–S521. [Google Scholar] [CrossRef]
- Lemon, P.W.; Dolny, D.G.; Yarasheski, K.E. Moderate physical activity can increase dietary protein needs. Can. J. Appl. Physiol. 1997, 22, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr. MeTable 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Consultation, F.E. Dietary protein quality evaluation in human nutrition. FAO Food Nutr. Pap. 2011, 92, 1–66. [Google Scholar]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Yang, Y.; Breen, L.; Burd, N.A.; Hector, A.J.; Churchward-Venne, T.A.; Josse, A.R.; Tarnopolsky, M.; Phillips, S.M. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br. J. Nutr. 2012, 108, 1780–1788. [Google Scholar] [CrossRef] [Green Version]
- Fern, E.; Bielinski, R.; Schutz, Y. Effects of exaggerated amino acid and protein supply in man. Experientia 1991, 47, 168–172. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Kovanen, V.; Selänne, H.; Kraemer, W.J.; Häkkinen, K.; Mero, A.A. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 2009, 37, 297–308. [Google Scholar] [CrossRef]
- Andersen, L.L.; Tufekovic, G.; Zebis, M.K.; Crameri, R.M.; Verlaan, G.; Kjær, M.; Suetta, C.; Magnusson, P.; Aagaard, P. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism 2005, 54, 151–156. [Google Scholar] [CrossRef]
- Coburn, J.W.; Housh, D.J.; Housh, T.J.; Malek, M.H.; Beck, T.W.; Cramer, J.T.; Johnson, G.O.; Donlin, P.E. Effects of leucine and whey protein supplementation during eight weeks of unilateral resistance training. J. Strength Cond Res. 2006, 20, 284–291. [Google Scholar] [PubMed]
- Willoughby, D.; Stout, J.; Wilborn, C. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 2007, 32, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.; Ferreri, D.M. Fueling the vegetarian (vegan) athlete. Curr. Sports Med. Rep. 2010, 9, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Burke, N.C.; Smith-Palmer, T.; Burke, D.G. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int. J. Sport Nutr. Exerc. MeTable 2006, 16, 233–244. [Google Scholar] [CrossRef]
- DeNysschen, C.A.; Burton, H.W.; Horvath, P.J.; Leddy, J.J.; Browne, R.W. Resistance training with soy vs whey protein supplements in hyperlipidemic males. J. Int Soc. Sports Nutr. 2009, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.M.; Tang, J.E.; Moore, D.R. The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J. Am. Coll. Nutr. 2009, 28, 343–354. [Google Scholar] [CrossRef]
- Volek, J.S.; Volk, B.M.; Gómez, A.L.; Kunces, L.J.; Kupchak, B.R.; Freidenreich, D.J.; Aristizabal, J.C.; Saenz, C.; Dunn-Lewis, C.; Ballard, K.D. Whey protein supplementation during resistance training augments lean body mass. J. Am. Coll. Nutr. 2013, 32, 122–135. [Google Scholar] [CrossRef]
- Mobley, C.B.; Haun, C.T.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Kephart, W.C.; Anderson, R.G.; Vann, C.G.; Osburn, S.C.; Pledge, C.D. Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients 2017, 9, 972. [Google Scholar] [CrossRef]
- Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.-H.; Lefranc-Millot, C.; Allaert, F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, placebo-controlled clinical trial vs. Whey protein. J. Int. Soc. Sports Nutr. 2015, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; Sales, A.; Carlson, L.; Steele, J. A comparison of the motivational factors between crossfit participants and other resistance exercise modalities: A pilot study. J. Sports Med. Phys. Fitness 2016, 57, 1227–1234. [Google Scholar] [PubMed]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; de Sá Souza, H.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J. Crossfit overview: Systematic review and meta-analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-intensity functional training (hift): Definition and research implications for improved fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S. The Culture of Crossfit: A Lifestyle Prescription for Optimal Health and Fitness. Available online: https://ir.library.illinoisstate.edu/sta/1/ (accessed on 27 December 2018).
- Haff, G.G.; Ruben, R.P.; Lider, J.; Twine, C.; Cormie, P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J. Strength Cond. Res. 2015, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Bender, D.; Vantrease, W.; Hudy, J.; Huet, K.; Williamson, C.; Bechke, E.; Serafini, P.; Mangine, G.T. Isometric mid-thigh pull performance is associated with athletic performance and sprinting kinetics in division i men and women’s basketball players. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef]
- Toohey, J.C.; Townsend, J.R.; Johnson, S.B.; Toy, A.M.; Vantrease, W.C.; Bender, D.; Crimi, C.C.; Stowers, K.L.; Ruiz, M.D.; VanDusseldorp, T.A.; et al. Effects of probiotic (bacillus subtilis) supplementation during offseason resistance training in female division i athletes. J. Strength Cond Res. 2018. [Google Scholar] [CrossRef]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application myfitnesspal. Nutr. Diet. 2018, 75, 219–225. [Google Scholar] [CrossRef]
- Green, S.; Salkind, N.; Akey, T. Methods for controlling type i error across multiple hypothesis tests. In Using SPSS for Windows: Analysing and Understanding Data; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2000; pp. 395–396. [Google Scholar]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of hift. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- Herda, A.A.; Herda, T.J.; Costa, P.B.; Ryan, E.D.; Stout, J.R.; Cramer, J.T. Muscle performance, size, and safety responses after eight weeks of resistance training and protein supplementation: A randomized, double-blinded, placebo-controlled clinical trial. J. Strength Cond. Res. 2013, 27, 3091–3100. [Google Scholar] [CrossRef]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelen, M.P.; Rutten, E.P.; De Castro, C.L.; Wouters, E.F.; Schols, A.M.; Deutz, N.E. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2007, 85, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Carlos Poston, W.S. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.; Young, K.C.; Lowery, R.P.; Wilson, J.M. The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in crossfit trainees: A pilot study. Sports 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Winchester, J.B. The relationship between isometric and dynamic strength in college football players. J. Sports Sci. Med. 2008, 7, 101. [Google Scholar] [PubMed]
- Mcguigan, M.R.; Newton, M.J.; Winchester, J.B.; Nelson, A.G. Relationship between isometric and dynamic strength in recreationally trained men. J. Strength Cond. Res. 2010, 24, 2570–2573. [Google Scholar] [CrossRef]
- Glassman, G. Understanding crossfit. CrossFit J. 2007, 56, 1. [Google Scholar]
- Outlaw, J.J.; Wilborn, C.D.; Smith-Ryan, A.E.; Hayward, S.E.; Urbina, S.L.; Taylor, L.W.; Foster, C.A. Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals. Springerplus 2014, 3, 369. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.T.; Hoffman, J.R.; Wang, R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur. J. Appl. Physiol. 2016, 116, 2367–2374. [Google Scholar] [CrossRef]
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative values for self-reported benchmark workout scores in crossfit® practitioners. Sports Med. Open 2018, 4, 39. [Google Scholar] [CrossRef] [PubMed]
Amino Acid | Whey Protein | Pea Protein |
---|---|---|
Alanine | 3.5 | 4.3 |
Arginine | 2.3 | 8.7 |
Aspartic Acid | 8.4 | 11.5 |
Cystine | 1.7 | 1 |
Glutamic Acid | 13.3 | 16.8 |
Glycine | 1.4 | 4.1 |
Histidine | 1.6 | 2.5 |
Isoleucine | 4.6 | 4.5 |
Leucine | 8.8 | 8.4 |
Lysine | 7.5 | 7.2 |
Methionine | 1.6 | 1.1 |
Phenylalanine | 2.6 | 5.5 |
Proline | 6.6 | 4.5 |
Serine | 4.6 | 5.3 |
Threonine | 4.5 | 3.9 |
Tryptophan | 1.3 | 1 |
Tyrosine | 2.3 | 3.8 |
Valine | 4.4 | 5 |
Variable | Treatment | PRE | Covariate | POST | F | p | η2 | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Squat 1RM (kg) | Whey | 107.7 ± 27.5 | 102.6 ± 35.9 | 111.7 ± 25.0 | 2.323 | 0.153 | 0.162 | 100.9 | 110.5 |
Pea | 98.6 ± 43.5 | 104.8 ± 42.5 | 105.6 | 115.9 | |||||
Deadlift 1RM (kg) | Whey | 135.4 ± 32.8 | 132.1 ± 37.5 | 142.5 ± 30.8 | 0.016 | 0.903 | 0.001 | 132.2 | 144.7 |
Pea | 129.3 ± 43.3 | 134.4 ± 46.7 | 131.2 | 144.6 | |||||
IMTP PF (N) | Whey | 2420.8 ± 207.9 | 2374.5 ± 521.0 | 2419.9 ± 412.3 | 0.741 | 0.408 | 0.063 | 2113.1 | 2522.5 |
Pea | 2339.8 ± 188.7 | 2341.8 ± 211.6 | 2228.0 | 2637.4 | |||||
IMTP RFD 250 ms (N) | Whey | 5497.4 ± 911.9 | 5605.0 ± 2170.4 | 5689.1 ± 2019.6 | 0.020 | 0.892 | 0.002 | 4000.9 | 7433.6 |
Pea | 5685.6 ± 756.1 | 5594.2 ± 1622.4 | 3981.7 | 7158.4 | |||||
WOD 1 (s) | Whey | 855.1 ± 62.8 | 870.1 ± 48.8 | 857.0 ± 63.0 | 3.572 | 0.083 | 0.229 | 846.8 | 898.0 |
Pea | 883.1 ± 31.1 | 856.1 ± 45.4 | 810.9 | 865.9 | |||||
WOD 2 (m) | Whey | 529.2 ± 74.3 | 560.3 ± 134.0 | 515.3 ± 66.7 | 0.008 | 0.931 | 0.001 | 526.9 | 569.7 |
Pea | 528.6 ± 48.6 | 517.1 ± 40.2 | 526.7 | 571.9 |
Variable | Treatment | PRE | Covariate | POST | F | p | η2 | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Body Mass (kg) | Whey | 83.9 ± 18.9 | 81.0 ± 15.1 | 83.7 ± 18.5 | 0.104 | 0.752 | 0.009 | 79.7 | 81.5 |
Pea | 78.4 ± 11.6 | 77.8 ± 11.6 | 79.5 | 81.3 | |||||
Body Fat (%) | Whey | 22.0 ± 7.7 | 22.1 ± 6.78 | 22.1 ± 7.3 | 0.220 | 0.647 | 0.018 | 21.2 | 22.7 |
Pea | 22.3 ± 6.4 | 21.6 ± 6.6 | 20.9 | 22.5 | |||||
Rectus Femoris Thickness (cm) | Whey | 2.51 ± 0.51 | 2.36 ± 0.48 | 2.50 ± 0.47 | 0.107 | 0.750 | 0.009 | 2.23 | 2.60 |
Pea | 2.24 ± 0.44 | 2.31 ± 0.39 | 2.18 | 2.57 | |||||
Vastus Lateralis Thickness (cm) | Whey | 1.80 ± 0.43 | 1.59 ± 0.50 | 1.74 ± 0.48 | 0.622 | 0.447 | 0.054 | 1.46 | 1.89 |
Pea | 1.49 ± 0.55 | 1.45 ± 0.24 | 1.31 | 1.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaszek, A.; Townsend, J.R.; Bender, D.; Vantrease, W.C.; Marshall, A.C.; Johnson, K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports 2019, 7, 12. https://doi.org/10.3390/sports7010012
Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports. 2019; 7(1):12. https://doi.org/10.3390/sports7010012
Chicago/Turabian StyleBanaszek, Amy, Jeremy R. Townsend, David Bender, William C. Vantrease, Autumn C. Marshall, and Kent D. Johnson. 2019. "The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study" Sports 7, no. 1: 12. https://doi.org/10.3390/sports7010012
APA StyleBanaszek, A., Townsend, J. R., Bender, D., Vantrease, W. C., Marshall, A. C., & Johnson, K. D. (2019). The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports, 7(1), 12. https://doi.org/10.3390/sports7010012