Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Experimental Design
2.3. Anthropometric Assessment
2.4. Muscular Isokinetic Assessment
2.5. Training Program
2.6. Ethical Aspects
2.7. Statistical Analyses
3. Results
4. Discussion
Study Limitation and Strengths
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kovaiou, R.D.; Herndler-Brandstetter, D.; Grubeck-Loebenstein, B. Age-related changes in immunity: Implications for vaccination in the elderly. Expert Rev. Mol. Med. 2007, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kimyagarov, S.; Klid, R.; Fleissig, Y.; Kopel, B.; Arad, M.; Adunsky, A. Skeletal muscle mass abnormalities are associated with survival rates of institutionalized elderly nursing home residents. J. Nutr. Health Aging 2012, 16, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Origins and clinical relevance of sarcopenia. Can. J. Appl. Physiol. 2001, 26, 78–89. [Google Scholar] [CrossRef]
- Hepple, R.T.; Ross, K.D.; Rempfer, A.B. Fiber atrophy and hypertrophy in skeletal muscles of late middle-aged Fischer 344 × Brown Norway F1-hybrid rats. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2004, 59, 108–117. [Google Scholar] [CrossRef]
- Hamrick, M.W.; McGee-Lawrence, M.E.; Frechette, D.M. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front. Endocrinol. 2016, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Alizadehkhaiyat, O.; Hawkes, D.H.; Kemp, G.J.; Howard, A.; Frostick, S.P. Muscle strength and its relationship with skeletal muscle mass indices as determined by segmental bio-impedance analysis. Eur. J. Appl. Physiol. 2014, 114, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef]
- Shaw, S.C.; Dennison, E.M.; Cooper, C. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse. Calcif. Tissue Int. 2017, 101, 229–247. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Song, M.-Y.; Ruts, E.; Kim, J.; Janumala, I.; Heymsfield, S.; Gallagher, D. Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am. J. Clin. Nutr. 2004, 79, 874–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; Newman, A.B.; et al. Health, Aging, and Body Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [CrossRef]
- Vargas, V.Z.; de Lira, C.A.B.; Vancini, R.L.; Rayes, A.B.R.; Andrade, M.S.; Vargas, V.Z.; de Lira, C.A.B.; Vancini, R.L.; Rayes, A.B.R.; Andrade, M.S. Fat mass is negatively associated with the physiological ability of tissue to consume oxygen. Motriz Rev. Educ. Física 2018, 24. [Google Scholar] [CrossRef]
- Jaric, S. Muscle Strength Testing. Sports Med. 2002, 32, 615–631. [Google Scholar] [CrossRef] [PubMed]
- JafariNasabian, P.; Inglis, J.E.; Kelly, O.J.; Ilich, J.Z. Osteosarcopenic obesity in women: Impact, prevalence, and management challenges. Int. J. Women’s Health 2017, 9, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Hughes, V.A.; Frontera, W.R.; Wood, M.; Evans, W.J.; Dallal, G.E.; Roubenoff, R.; Fiatarone Singh, M.A. Longitudinal muscle strength changes in older adults: Influence of muscle mass, physical activity, and health. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001, 56, B209–B217. [Google Scholar] [CrossRef]
- Kelly, O.J.; Gilman, J.C. Can Unconventional Exercise be Helpful in the Treatment, Management and Prevention of Osteosarcopenic Obesity? Curr. Aging Sci. 2017, 10, 106–121. [Google Scholar] [CrossRef]
- Deckx, N.; Wens, I.; Nuyts, A.H.; Hens, N.; De Winter, B.Y.; Koppen, G.; Goossens, H.; Van Damme, P.; Berneman, Z.N.; Eijnde, B.O.; et al. 12 Weeks of Combined Endurance and Resistance Training Reduces Innate Markers of Inflammation in a Randomized Controlled Clinical Trial in Patients with Multiple Sclerosis. Mediat. Inflamm. 2016, 2016, 6789276. [Google Scholar] [CrossRef]
- Phu, S.; Boersma, D.; Duque, G. Exercise and Sarcopenia. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2015, 18, 488–492. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics. 2012. Available online: http://www.who.int/gho/publications/world_health_statistics/2012/en/ (accessed on 19 November 2018).
- Glickman, S.G.; Marn, C.S.; Supiano, M.A.; Dengel, D.R. Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J. Appl. Physiol. 2004, 97, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.; De Lucia Rolfe, E.; Sleigh, A.; Kivisild, T.; Behbehani, K.; Wareham, N.J.; Brage, S.; Mohammad, T. Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr. Diabetes 2017, 7, e238. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, N.C.; Vancini, R.L.; Lira, C.A.B.; Andrade, M.S. Stretch-induced reductions in throwing performance are attenuated by warm-up before exercise. J. Strength Cond. Res. 2015, 29. [Google Scholar] [CrossRef] [PubMed]
- Capranica, L.; Battenti, M.; Demarie, S.; Figura, F. Reliability of isokinetic knee extension and flexion strength testing in elderly women. J. Sports Med. Phys. Fit. 1998, 38, 169–176. [Google Scholar]
- Frontera, W.R.; Meredith, C.N.; O’Reilly, K.P.; Knuttgen, H.G.; Evans, W.J. Strength conditioning in older men: Skeletal muscle hypertrophy and improved function. J. Appl. Physiol. 1988, 64, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, M.C.; Dias, J.M.D.; de Vasconcelos, K.S.S.; Medeiros, A.P.P.; Santos, C.M.; Dias, R.C. Impact of clinical and functional conditions on quality of life in old women with obesity. Fisioter. E Pesqui. 2014, 21, 372–377. [Google Scholar] [CrossRef]
- Combaret, L.; Dardevet, D.; Béchet, D.; Taillandier, D.; Mosoni, L.; Attaix, D. Skeletal muscle proteolysis in aging. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Marzetti, E.; Hwang, J.C.Y.; Lees, H.A.; Wohlgemuth, S.E.; Dupont-Versteegden, E.E.; Carter, C.S.; Bernabei, R.; Leeuwenburgh, C. Mitochondrial death effectors: Relevance to sarcopenia and disuse muscle atrophy. Biochim. Et Biophys. Acta 2010, 1800, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Chen, P.; Zhuang, J.; Zhang, Y.; Walt, S. Metabolic Cost, Mechanical Work, and Efficiency During Normal Walking in Obese and Normal-Weight Children. Res. Q. Exerc. Sport 2013, 84, S72–S79. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Zoico, E.; Harris, T.B.; Meigs, J.B.; Di Francesco, V.; Fantin, F.; Bissoli, L.; Bosello, O. Health consequences of obesity in the elderly: A review of four unresolved questions. Int. J. Obes. 2005, 29, 1011–1029. [Google Scholar] [CrossRef]
- Pyka, G.; Lindenberger, E.; Charette, S.; Marcus, R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J. Gerontol. 1994, 49, M22–M27. [Google Scholar] [CrossRef]
- Hilton, T.N.; Tuttle, L.J.; Bohnert, K.L.; Mueller, M.J.; Sinacore, D.R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 2008, 88, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Stauber, P.M.; McHugh, D.; Koehler, K.M.; Garry, P.J. Cross-sectional age differences in body composition in persons 60+ years of age. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1995, 50, M307–M316. [Google Scholar] [CrossRef]
- Kehayias, J.J.; Fiatarone, M.A.; Zhuang, H.; Roubenoff, R. Total body potassium and body fat: Relevance to aging. Am. J. Clin. Nutr. 1997, 66, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Rahemi, H.; Nigam, N.; Wakeling, J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface 2015, 12, 20150365. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Chomentowski, P.; Ward, B.K.; Rossi, A.; Glynn, N.W.; Delmonico, M.J.; Kritchevsky, S.B.; Pahor, M.; Newman, A.B. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: A randomized controlled trial. J. Appl. Physiol. 2008, 105, 1498–1503. [Google Scholar] [CrossRef]
- Miljkovic, I.; Kuipers, A.L.; Cauley, J.A.; Prasad, T.; Lee, C.G.; Ensrud, K.E.; Cawthon, P.M.; Hoffman, A.R.; Dam, T.-T.; Gordon, C.L.; et al. Osteoporotic Fractures in Men Study Group Greater Skeletal Muscle Fat Infiltration Is Associated With Higher All-Cause and Cardiovascular Mortality in Older Men. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2015, 70, 1133–1140. [Google Scholar] [CrossRef]
- Engelke, K.; Museyko, O.; Wang, L.; Laredo, J.-D. Quantitative analysis of skeletal muscle by computed tomography imaging—State of the art. J. Orthop. Transl. 2018, 15, 91–103. [Google Scholar] [CrossRef]
- Verdijk, L.B.; van Loon, L.; Meijer, K.; Savelberg, H.H.C.M. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J. Sports Sci. 2009, 27, 59–68. [Google Scholar] [CrossRef]
- Ly, L.P.; Handelsman, D.J. Muscle strength and ageing: Methodological aspects of isokinetic dynamometry and androgen administration. Clin. Exp. Pharmacol. Physiol. 2002, 29, 37–47. [Google Scholar] [CrossRef]
- Knapik, J.J.; Wright, J.E.; Mawdsley, R.H.; Braun, J.M. Isokinetic, isometric and isotonic strength relationships. Arch. Phys. Med. Rehabil. 1983, 64, 77–80. [Google Scholar]
- Abernethy, P.; Wilson, G.; Logan, P. Strength and power assessment. Issues, controversies and challenges. Sports Med. 1995, 19, 401–417. [Google Scholar] [CrossRef] [PubMed]
Variables | EG (n = 20) | NEG (n = 21) | p Value | Power Analyses |
---|---|---|---|---|
Age (years) | 70.9 ± 5.1 | 69.6 ± 4.8 | 0.39 | 0.71 |
Height (cm) | 155.3 ± 6.6 | 156.1 ± 6.4 | 0.70 | 0.81 |
Lean mass (kg) | 33.7 ± 3.4 | 35.1 ± 3.7 | 0.19 | 0.64 |
Fat mass (kg) | 23.5 ± 8.1 | 30.1 ± 7.9 | 0.01 * | 0.58 |
Total body mass (kg) | 59.3 ± 10.6 | 67.5 ± 10.0 | 0.01 * | 0.54 |
Total body lean mass (%) | 57.8 ± 7.1 | 52.6 ± 5.6 | 0.01 * | 0.57 |
Total body fat mass (%) | 40.1 ± 7.5 | 45.6 ± 5.8 | 0.01 * | 0.58 |
BMI (kg·m−2) | 24.4 ± 3.1 | 27.7 ± 3.9 | 0.005 * | 0.61 |
Variables | EG (n = 20) | NEG (n = 21) | p Value | Power Analyses |
---|---|---|---|---|
1.05 rad·s−1 | ||||
Dominant extensor muscles | 75.1 ± 9.9 | 73.2 ± 23.9 | 0.75 | 0.84 |
Non-dominant extensor muscles | 78.1 ± 10.1 | 70.7 ± 26.5 | 0.25 | 0.70 |
Dominant flexor muscles | 34.8 ± 7.3 | 31.5 ± 13.3 | 0.34 | 0.72 |
Non-dominant flexor muscles | 36.1 ± 7.8 | 33.0 ± 12.7 | 0.35 | 0.70 |
3.14 rad·s−1 | ||||
Dominant extensor muscles | 51.0 ± 9.3 | 48.3 ± 14.5 | 0.49 | 0.75 |
Non-dominant extensor muscles | 52.1 ± 7.9 | 45.7 ± 13.5 | 0.07 | 0.63 |
Dominant flexor muscles | 26.9 ± 6.7 | 24.5 ± 9.8 | 0.37 | 0.72 |
Non-dominant flexor muscles | 26.7 ± 5.9 | 25.4 ± 10.0 | 0.60 | 0.77 |
Variables | EG (n = 20) | NEG (n = 21) | p Value | Power Analyses |
---|---|---|---|---|
1.05 rad·s−1 | ||||
Dominant extensor muscles | 127.9 ± 22.9 | 110.5 ± 31.3 * | 0.04 * | 0.59 |
Non-dominant extensor muscles | 124.7 ± 31.2 | 107.3 ± 35.3 | 0.10 | 0.64 |
Dominant flexor muscles | 59.6 ± 15.3 | 47.4 ± 17.0 * | 0.02 * | 0.61 |
Non-dominant flexor muscles | 61.6 ± 14.8 | 47.9 ± 19.2 * | 0.01 * | 0.56 |
3.14 rad·s−1 | ||||
Dominant extensor muscles | 87.8 ± 23.8 | 73.4 ± 19.4 * | 0.04 * | 0.62 |
Non-dominant extensor muscles | 88.8 ± 18.2 | 68.6 ± 18.5 * | >0.01 * | 0.58 |
Dominant flexor muscles | 46.5 ± 15.2 | 36.8 ± 12.9 * | 0.03 * | 0.61 |
Non-dominant flexor muscles | 45.6 ± 11.9 | 38.1 ± 12.8 | 0.06 | 0.64 |
Variables | EG (n = 20) | NEG (n = 21) | p Value | Power Analyses |
---|---|---|---|---|
1.05 rad·s−1 | ||||
Dominant extensor muscles | 2.24 ± 0.38 | 2.07 ± 0.56 | 0.24 | 0.66 |
Non-dominant extensor muscles | 2.32 ± 0.29 | 1.99 ± 0.65 | 0.04 * | 0.61 |
Dominant flexor muscles | 1.04 ± 0.25 | 0.89 ± 0.33 | 0.10 | 0.63 |
Non-dominant flexor muscles | 1.07 ± 0.22 | 0.93 ± 0.33 | 0.12 | 0.66 |
3.14 rad·s−1 | ||||
Dominant extensor muscles | 1.53 ± 0.36 | 1.36 ± 0.34 | 0.13 | 0.65 |
Non-dominant extensor muscles | 1.56 ± 0.30 | 1.29 ± 0.32 | 0.01 * | 0.64 |
Dominant flexor muscles | 0.81 ± 0.23 | 0.69 ± 0.23 | 0.11 | 0.66 |
Non-dominant flexor muscles | 0.79 ± 0.18 | 0.71 ± 0.25 | 0.26 | 0.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lira, C.; Vargas, V.; Silva, W.; Bachi, A.; Vancini, R.; Andrade, M. Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women. Sports 2019, 7, 19. https://doi.org/10.3390/sports7010019
De Lira C, Vargas V, Silva W, Bachi A, Vancini R, Andrade M. Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women. Sports. 2019; 7(1):19. https://doi.org/10.3390/sports7010019
Chicago/Turabian StyleDe Lira, Claudio, Valentine Vargas, Wallace Silva, André Bachi, Rodrigo Vancini, and Marilia Andrade. 2019. "Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women" Sports 7, no. 1: 19. https://doi.org/10.3390/sports7010019
APA StyleDe Lira, C., Vargas, V., Silva, W., Bachi, A., Vancini, R., & Andrade, M. (2019). Relative Strength, but Not Absolute Muscle Strength, Is Higher in Exercising Compared to Non-Exercising Older Women. Sports, 7(1), 19. https://doi.org/10.3390/sports7010019