Effects of a 2-km Swim on Markers of Cycling Performance in Elite Age-Group Triathletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Participants
2.3. Swimming Protocol
2.4. Cycling Protocol
2.5. Statistical Analyses
3. Results
3.1. Submaximal Aerobic Profiles
3.2. Maximal Aerobic Profiles
3.3. Swimming Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Käch, I.W.; Rüst, C.A.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The age-related performance decline in Ironman triathlon starts earlier in swimming than in cycling and running. J. Strength. Cond. Res. 2018, 32, 379–395. [Google Scholar] [CrossRef]
- Cox, G.R.; Snow, R.J.; Burke, L.M. Race-day carbohydrate intakes of elite triathletes contesting olympic-distance triathlon events. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 299–306. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Miura, H.; Kitagawa, K.; Ishiko, T. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon. Int. J. Sports Med. 1997, 18, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Robson, S.J.; King, M.J.; Davie, A.J. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J. Sports Med. Phys. Fitness 1997, 37, 122–130. [Google Scholar]
- Schabort, E.J.; Killian, S.C.; St Clair Gibson, A.; Hawley, J.A.; Noakes, T.D. Prediction of triathlon race time from laboratory testing in national triathletes. Med. Sci. Sports Exerc. 2000, 32, 844–849. [Google Scholar] [CrossRef]
- Bentley, D.J.; Wilson, G.J.; Davie, A.J.; Zhou, S. Correlations between peak power output, muscular strength and cycle time trial performance in triathletes. J. Sports Med. Phys. Fitness 1998, 38, 201–207. [Google Scholar] [PubMed]
- Hawley, J.A.; Noakes, T.D. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Boone, T.; Thompson, W.R.; Burkes, S.; Cortes, C.W. Cardiovascular and thermal responses of triathlon performance. Med. Sci. Sports Exerc. 1988, 20, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; Brisswalter, J.; Hausswirth, C.; Bernard, T.; Vallier, J.-M. Does prior 1500-m swimming affect cycling energy expenditure in well-trained triathletes? Can. J. Appl. Physiol. 2005, 30, 392–403. [Google Scholar] [CrossRef]
- Laursen, P.B.; Rhodes, E.C.; Langill, R.H. The effects of 3000-m swimming on subsequent 3-h cycling performance: implications for ultraendurance triathletes. Eur. J. Appl. Physiol. 2000, 83, 28–33. [Google Scholar] [CrossRef]
- Bell, P.G.; Furber, M.J.; Van Someren, K.A.; Anton-Solanas, A.; Swart, J. The Physiological Profile of a Multiple Tour de France Winning Cyclist. Med. Sci. Sports Exerc. 2017, 49, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.K.; Kravitz, L.; Robergs, R. VO2max, protocol duration, and the VO2 plateau. Med. Sci. Sports Exerc. 2007, 39, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of World Class Cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Newell, J.; Higgins, D.; Madden, N.; Cruickshank, J.; Einbeck, J.; McMillan, K.; McDonald, R. Software for calculating blood lactate endurance markers. J. Sports Sci. 2007, 25, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Jamnick, N.A.; Botella, J.; Pyne, D.B.; Bishop, D.J. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PloS ONE 2018, 13, e0199794. [Google Scholar] [CrossRef] [PubMed]
- Heck, H.; Mader, A.; Hess, G.; Mucke, S.; Muller, R.; Hollmann, W. Justification of the 4-mmol/L lactate threshold. Int. J. Sports Med. 1985, 6, 117–130. [Google Scholar] [CrossRef]
- Hughes, E.F.; Turner, S.C.; Brooks, G.A. Effects of glycogen depletion and pedaling speed on “anaerobic threshold”. J. Appl. Physiol. 1982, 52, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Moquin, A.; Mazzeo, R.S. Effect of mild dehydration on the lactate threshold in women. Med. Sci. Sports Exerc. 2000, 32, 396–402. [Google Scholar] [CrossRef]
- Weltan, S.M.; Bosch, A.N.; Dennis, S.C.; Noakes, T.D. Influence of muscle glycogen content on metabolic regulation. Am. J. Physiol. 1998, 274, E72–E82. [Google Scholar] [CrossRef]
- Olsson, K.E.; Saltin, B. Variation in total body water with muscle glycogen changes in man. Acta Physiol. Scand. 1970, 80, 11–18. [Google Scholar] [CrossRef]
- Cade, J.R.; Reese, R.H.; Privette, R.M.; Hommen, N.M.; Rogers, J.L.; Fregly, M.J. Dietary intervention and training in swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 210–215. [Google Scholar] [CrossRef]
- Maughan, R.J.; Dargavel, L.A.; Hares, R.; Shirreffs, S.M. Water and salt balance of well-trained swimmers in training. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 598–606. [Google Scholar] [CrossRef]
- Green, J.M.; Miller, B.; Simpson, J.; Dubroc, D.; Keyes, A.; Neal, K.; Gann, J.; Andre, T. Effects of 2% Dehydration on Lactate Concentration During Constant-Load Cycling. J. Strength. Cond. Res. 2018, 32, 2066–2071. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Mahood, N.V.; Mattern, C.Q.; Kertzer, R.; Quinn, T.J. Hypohydration adversely affects lactate threshold in endurance athletes. J. Strength. Cond. Res. 2002, 16, 38–43. [Google Scholar]
- Johnson, J.M. Regulation of skin circulation during prolonged exercise. Ann. N. Y. Acad. Sci. 1977, 301, 195–212. [Google Scholar] [CrossRef]
- Roberts, M.F.; Wenger, C.B. Control of skin circulation during exercise and heat stress. Med. Sci. Sports 1979, 11, 36–41. [Google Scholar]
- Febbraio, M.; Carey, M.; Snow, R.; Stathis, C.; Hargreaves, M. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 271, R1251–R1255. [Google Scholar] [CrossRef]
- Costill, D.L.; Cahill, P.J.; Eddy, D. Metabolic responses to submaximal exercise in three water temperatures. J. Appl. Physiol. 1967, 22, 628–632. [Google Scholar] [CrossRef]
- Bentley, D.J.; Libicz, S.; Jougla, A.; Coste, O.; Manetta, J.; Chamari, K.; Millet, G.P. The effects of exercise intensity or drafting during swimming on subsequent cycling performance in triathletes. J. Sci. Med. Sport 2007, 10, 234–243. [Google Scholar] [CrossRef]
- Delextrat, A.; Tricot, V.; Bernard, T.; Vercruyssen, F.; Hausswirth, C.; Brisswalter, J. Drafting during swimming improves efficiency during subsequent cycling. Med. Sci. Sports Exerc. 2003, 35, 1612–1619. [Google Scholar] [CrossRef]
- Delextrat, A.; Tricot, V.; Bernard, T.; Vercruyssen, F.; Hausswirth, C.; Brisswalter, J. Modification of cycling biomechanics during a swim-to-cycle trial. J. Appl. Biomech. 2005, 21, 297–308. [Google Scholar] [CrossRef]
- Millet, G.P.; Bentley, D.J. The physiological responses to running after cycling in elite junior and senior triathletes. Int. J. Sports Med. 2004, 25, 191–197. [Google Scholar] [CrossRef]
- Millet, G.P.; Dreano, P.; Bentley, D.J. Physiological characteristics of elite short- and long-distance triathletes. Eur. J. Appl. Physiol. 2003, 88, 427–430. [Google Scholar] [CrossRef]
- Peeling, P.; Bishop, D.; Landers, G. Effect of swimming intensity on subsequent cycling and overall triathlon performance. Br. J. Sports Med. 2005, 39, 960–964. [Google Scholar] [CrossRef]
- Holly, R.G.; Barnard, R.J.; Rosenthal, M.; Applegate, E.; Pritikin, N. Triathlete characterization and response to prolonged strenuous competition. Med. Sci. Sports Exerc. 1986, 18, 123–127. [Google Scholar] [CrossRef]
- Granata, C.; Oliveira, R.S.; Little, J.P.; Renner, K.; Bishop, D.J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016, 30, 3413–3423. [Google Scholar] [CrossRef]
- Pollock, M.L.; Foster, C.; Knapp, D.; Rod, J.L.; Schmidt, D.H. Effect of age and training on aerobic capacity and body composition of master athletes. J. Appl. Physiol. (1985) 1987, 62, 725–731. [Google Scholar] [CrossRef]
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef]
- Kohrt, W.M.; O’Connor, J.S.; Skinner, J.S. Longitudinal assessment of responses by triathletes to swimming, cycling, and running. Med. Sci. Sports Exerc. 1989, 21, 569–575. [Google Scholar] [CrossRef]
- Roels, B.; Schmitt, L.; Libicz, S.; Bentley, D.; Richalet, J.P.; Millet, G. Specificity of VO2max and the ventilatory threshold in free swimming and cycle ergometry: comparison between triathletes and swimmers. Br. J. Sports Med. 2005, 39, 965–968. [Google Scholar] [CrossRef]
- Sato, A.; Koike, A.; Koyama, Y.; Yajima, T.; Marumo, F.; Hiroe, M. Effects of posture on left ventricular diastolic filling during exercise. Med. Sci. Sports Exerc. 1999, 31, 1564–1569. [Google Scholar] [CrossRef]
- Warburton, D.E.; Haykowsky, M.J.; Quinney, H.A.; Blackmore, D.; Teo, K.K.; Humen, D.P. Myocardial response to incremental exercise in endurance-trained athletes: Influence of heart rate, contractility and the Frank-Starling effect. Exp. Physiol. 2002, 87, 613–622. [Google Scholar] [CrossRef]
- Coyle, E.F. Cardiovascular drift during prolonged exercise and the effects of dehydration. Int. J. Sports Med. 1998, 19, S121–124. [Google Scholar] [CrossRef]
- Jones, A.M.; Grassi, B.; Christensen, P.M.; Krustrup, P.; Bangsbo, J.; Poole, D.C. Slow component of VO2 kinetics: Mechanistic bases and practical applications. Med. Sci. Sports Exerc. 2011, 43, 2046–2062. [Google Scholar] [CrossRef]
- Bangsbo, J.; Krustrup, P.; Gonzalez-Alonso, J.; Saltin, B. ATP production and efficiency of human skeletal muscle during intense exercise: Effect of previous exercise. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E956–E964. [Google Scholar] [CrossRef]
- Jones, A.M.; Wilkerson, D.P.; Burnley, M.; Koppo, K. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med. Sci. Sports. Exerc. 2003, 35, 2085–2092. [Google Scholar] [CrossRef]
Subjects | Age (year) | Height (m) | Body Mass (kg) | BMI (kg/m2) | Body Fat (%) | Half-Distance Personal Best (h) a | Full-Distance Personal Best (h) b |
---|---|---|---|---|---|---|---|
All | 38.3 ± 8.4 | 1.76 ± 0.12 | 69.5 ± 13.7 | 22.4 ± 2.1 | 15.6 ± 4.5 | 4.69 ± 0.26 | 10.15 ± 0.49 |
Males | 37.2 ± 8.1 | 1.82 ± 0.08 | 77.1 ± 7.0 | 23.5 ± 1.3 | 14.4 ± 4.1 | 4.62 ± 0.22 | 10.07 ± 0.62 |
Females | 40.6 ± 9.4 | 1.63 ± 0.10 † | 54.1 ± 10.3 † | 20.1 ± 1.4 † | 18.1 ± 4.1 | 4.84 ± 0.30 | 10.27 ± 0.17 |
Trial | Power at 4 mM (W) | HR at 4 mM (BPM) | Economy at 220 W (m) or 150 W (f) (W/L O2) | HR at 220 W (m) or 150 W (f) (BPM) | RER at 220 W (m) or 150 W (f) | VO2max (mL·kg−1·min−1) | HRmax (BPM) | Peak Power (W) | Relative Peak Power (W·kg−1) |
---|---|---|---|---|---|---|---|---|---|
Bike-only | 230 ± 48 | 147 ± 8 | 70.3 ± 5.3 | 134 ± 15 | 0.87 ± 0.4 | 57.7 ± 6.3 | 171 ± 9 | 356 ± 65 | 5.15 ± 0.46 |
Swim-bike | 219 ± 37 | 148 ± 9 | 71.9 ± 3.8 | 141 ± 11 | 0.87 ± 0.3 | 55.3 ± 5.7 | 168 ± 10 | 340 ± 69 | 4.94 ± 0.44 |
Mean % change [95% CI] | −3.8 [−7.7, 0.2] | 2.5 [−1.4, 3.6] | 3.3 [−0.7, 5.9] | 4.0 [1.7, 9.7] | −0.8 [−2.7, 1.1] | −4.0 [−6.5, −1.4] | −1.4 [−2.8, 0.05] | −4.8 [−7.3, −2.3] | −4.0 [−6.7, −1.3] |
p-value | 0.03 * | 0.43 | 0.18 | 0.02 * | 0.38 | 0.01 * | 0.058 | <0.01 * | 0.01 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothschild, J.; Crocker, G.H. Effects of a 2-km Swim on Markers of Cycling Performance in Elite Age-Group Triathletes. Sports 2019, 7, 82. https://doi.org/10.3390/sports7040082
Rothschild J, Crocker GH. Effects of a 2-km Swim on Markers of Cycling Performance in Elite Age-Group Triathletes. Sports. 2019; 7(4):82. https://doi.org/10.3390/sports7040082
Chicago/Turabian StyleRothschild, Jeffrey, and George H. Crocker. 2019. "Effects of a 2-km Swim on Markers of Cycling Performance in Elite Age-Group Triathletes" Sports 7, no. 4: 82. https://doi.org/10.3390/sports7040082
APA StyleRothschild, J., & Crocker, G. H. (2019). Effects of a 2-km Swim on Markers of Cycling Performance in Elite Age-Group Triathletes. Sports, 7(4), 82. https://doi.org/10.3390/sports7040082